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We present a fully quantum mechanical treatment of the nondegenerate optical parametric oscillator both
below and near threshold. This is a nonequilibrium quantum system with a critical point phase transition, that
is also known to exhibit strong yet easily observed squeezing and quantum entanglement. Our treatment makes
use of the positive® representation and goes beyond the usual linearized theory. We compare our analytical
results with numerical simulations and find excellent agreement. We also carry out a detailed comparison of
our results with those obtained from stochastic electrodynamics, a theory obtained by truncating the equation
of motion for the Wigner function, with a view to locating regions of agreement and disagreement between the
two. We calculate commonly used measures of quantum behavior including entanglement, squeezing, and
Einstein-Podolsky-RoseEPR) correlations as well as higher order tripartite correlations, and show how these
are modified as the critical point is approached. These results are compared with those obtained using two
degenerate parametric oscillators, and we find that in the near-critical region the nondegenerate oscillator has
stronger EPR correlations. In general, the critical fluctuations represent an ultimate limit to the possible
entanglement that can be achieved in a nondegenerate parametric oscillator.
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I. INTRODUCTION tial applications in the field of quantum information. Criteria

Nonlinear optical devices such as optical parametric osfOr Proving entanglement using continuous variafjeadra-
cillators (OPO'9 and optical parametric amplifief4] have ture phase amplitudeneasurements have been developed by
been studied in the last 40 years to provide fundamental test8uan et al. and Simon[14]. Recent experimentg7,15,16
of quantum mechanics, as well as for their technological aphave measured such continuous variable entanglement but
plications in areas such as frequency conversion, low noisagain the studies are limited to the regime of stable, linear-
optical measurement, squeezed light souf@sand cryp- izable quantum fluctuations. In this regime Gaussian statis-
tography. Nondegenerate optical parametric oscillators, itics apply, and the criterion developed can be shiv to
particular, display intensity correlatiorf8] and very short be both a necessary and sufficient condition for entanglement
correlation times between the conjugate beq#jsThe en-  in this case.
tangled nature of the photons in the down-converted light has |t is known from earlier theoretical analysgis7,1§ of the
been instrumental in providing experimental demonstrationgptical properties of nonlinear interferometers that, in the
[5-8| of the original Einstein-Podolsky-Rosen paradox andjinearized or Gaussian regime, a local realistic theory based
other nonclassical fea_ltures of quantum mechanics. In thign the Wigner phase space representation gives the same
paper, we extend the linear theory of the nondegenerate OP{?.sults for the correlations between signal and idler light
to !nclude nor_lllnear effects characte_rlst_lc of the onset of . ms produced in nonlinear cryst&ls,18. While this is
::L?rttlac?rt;ltuﬁtlt:ﬁ::aotglilr}?n?irt;htrr?eShr?wg(ivrmlr%h S'ZSZ‘;;EZS;C:(; fg;‘:also true of many correlations in second harmonic generation

[19], there are instances where significant differences exist

tanglement available. L
As a fundamental application of these results, we poinpetween the predictions of the two theorg)]. Here we

out that in 1935 Einstein, Podolsky, and Rog&PR [9] Ca'C“'a!te t_he EPR anql entanglement measures for non-
presented their famous argument which demonstrates that IG2ussian fields, in precisely the type of environment where
cal realism is inconsistent with the completeness of quanturRoN-Gaussian  behavior is  expected to  occur
mechanics. Their argument concerned two spatially sepaxPerimentally—thatis, by considering nonlinear corrections
rated particles with perfectly correlated positions and mo10 the usual linearized approximations used to treat the OPO
menta, as predicted by quantum mechanics. Related correlgelow threshold.
tions for quadrature phase operators have been studied In two recent paperf21,22 we have carried out a fully
[10-13 and experimentally confirmed for the output fields quantum mechanical analysis of nonlinear effects and critical
of the nondegenerate parametric oscillator, both be\] fluctuations in a degenerate OPO using the poskvepre-
and abovd13] threshold. The study of these correlations hassentation, and have investigated the squeezing spectra and
so far been confined to regimes of operation where the quartriple correlations in this system both analytically as well as
tum fluctuations are small, so that a linearized analysis isiumerically. In particular, we have shown that, in this case,
valid. while the full quantum theory and the semiclassical theory
Closely linked with the phenomenon of EPR correlationsdisagree strongly far below threshold, there is a surprising
is that of entanglement, a key feature enabling many poteragreement between the two close to the threshold where
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with &y, a5, anda, representing the pump, signal, and idler
intracavity modes at frequencieg, w;, andw,, respectively,

where wyg=wq+w,. The termsl’; represent reservoir opera-
tors andy denotes the nonlinear coupling constant due to the
second order polarizability of the nonlinear crystal.
» X This is a driven system far from thermal equilibrium, so it
is not appropriate to assume a canonical ensemble. Instead,
the density matrix must be calculated as the solution of a
master equation in the Schrodinger picture. For simplicity,
we transform to a rotating frame in which the free-field time
evolution is removed. The master equation for the reduced
density operator, obtained after the elimination of the reser-

voirs using standard techniqugzb], is given by
FIG. 1. Schematic diagram of a driven nondegenerate paramet-

ric oscillator. 2
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. . . .. i=0

quantum fluctuations are quite intense, characteristic of a tan aatn '

mixed state of light in this limit. —&aip-paa), (2.2

S for he oase of a nondegenerate optcal parametis oseTETe &€ the damping rates for the mode amplides. For

gene P P . simplicity, we assume thag, =y,=y throughout this paper.

lator. Both the quantum mechanical and semiclassical analy To handle master equations such as this it proves conve-

ii;g:i;i{:ﬁ&;gﬂg gar:c”izll :Egn%fn?gmgiﬁrf:txv;geehx;%ient to transform them into-number Fokker-Planck equa-

ior of this system clos.e fo the critical oin{)to ascertain thetions or equivalently into stochastic equations using operator
y P .Trepresentation theory. Here, as in our earlier work, we use

ltm:‘:feozrﬁgte\‘;\}glﬁ? de?géfgrﬁaiozge*a;ﬁn;’ Oarlgm?f;;?lfs'?%é?he positiveP representation for this purpose, and we also
gime. ) 9 P J compare these results with the approximate semiclassical
low the critical point for output mode entanglement and

. . . . . truncation of the Wigner representation.
squeezing, while the optimum internal squeezing and en-

tanglement is achieved just above threshold. The results are
compared with a configuration in which two degenerate
parametric oscillators are combined to obtain correlated out- ) N ) .
puts. We find that, while these have similar behavior in the Using the positiveP representatiori26], we can include
linearized region well below threshold, the single nondegencorrelations and fluctuations by expanding the density matrix
erate oscillator has greater optimal correlations near threstlescribing the system in an off-diagonal coherent state basis
old, given the same total pump power. as

B. The positive P representation

~ |a><(a+)* |P + d6 d6 + 2 3
Il. HAMILTONIAN AND STOCHASTIC EQUATIONS =) (@) ) Ha,a’)d e (2.3

We consider here the standard model for three modeghere a=(ay,a;,a,) and a"=(aj,a},a3) are two inde-

coupled by a nonlinear crystal inside a Fabry-Peérot interferyandent triplets of complex variables. The functPiw, a*)
ometer with allowance made for coherent pumping anqps a positive phase space distribution and, by virtue of Eq.
damping due to cavity losses. The general development Qb.3), satisfies the following Fokker-Planck equatipt2],

this type of open system theory is well described in the lit-555,ming that boundary terms vanish on partial integration:
erature. This model implies certain restrictions on mode

spacing for its validity, since we assume only these three dP. | . < +i f e tat - €
modes are excited. A schematic diagram is shown in Fig. 1. g — [v0a0 + xanaz = €] J w00 + xaraz = €]

dag @
. J + J + +
A. Hamiltonian + [y — xapas] + —[nag — xapas]
aal 0&1

The Heisenberg-picture Hamiltonian that describes this

open system is given bjl2,23,24 + i[?fzaz—xaoaﬂ + %[?’2“5‘)(“5011]

H= hwda +ihx(alala, - 3,3,3) +ifi(Ee“ta) P i
2 o8+ (3130~ o) + I (e, + " (yag) + —5— (xad) (Pulma’). (2.4
) daday daday
- sdudtay) + > (AT + éi’rfi)_ (2.1 This can equivalently be written as the following set of It6
. stochastic equationg8]:
Here € represents the external input field at a frequeagy dag = (€ = yap — xaya)dt,
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dag = (£* = ypap — xajaz)dt,
day = (= yia; + xazag)dt+ (xyap) "2dW,,
day = (= 107 + xapag)dt+ (xag)dW,

day = (= a0y + xagag)dt+ (yag) Y2dWs,

daj = (= yaa5 + xarag)dt+ (yag) 2dW;, (2.5
where
(dWj) =(dW,) =0,

PHYSICAL REVIEW A 70, 053807(2004)

Py | 0 d . s
— =) T (vao+ xa1a, = &) + —(nap + xaya, = )
ot dag dag

Jd " Jd N N
+ — (101 — xaap) + (104 = xarap)

day day

J * Jd * *
+ — (70, — xayap) + P (y20, = Xy )

J ay Ct’;
& & &
-+
dagday
P P
+ Pw-
dadaydayg

If we drop the third order derivative terms, in an approxi-
mation valid in the limit of large photon number, we can
equate the resulting truncated Fokker-Planck equation de-
scribing the evolution of the Wigner function with a set of 1td
stochastic equations which read as follows:

%

* + *
n&al&al 72 daydas,

il
4 8&1(?012(%(6

(2.9

with all other noise correlations vanishing. These equations
imply that(e;a;)=(f;)=0 when there is no driving field, as
physically expected for a vacuum state in a normally ordered
representation.

Numerical simulations of these stochastic trajectories con-
firm the assumption of asymptotically vanishing boundary
terms for the parameters we use, as the trajectories are
strongly bounded to a compact domain. This is similar to
earlier studies, where boundary terms were found to be ex-
ponentially suppressed for large dampiiy]—i.e., y,> x,
which corresponds to typical experimental conditions for re-
alistic OPQO’s in current use. At smaller damping rates, it
would become important to include stochastic gauge terms

dap = (€ = yoap = xaza)dt+ 3 yodWp,
da(*) =(E*- yoarg - )(a*la*z)dt + V’?odV\f ,

* I

day = (= y1a1 + xYapag)dt+ vV y,dWi,
* * * I

da; = (- yrap + xaag)dt+ 1y dW,
* —

day = (= yoap + xayag)dt + V y,d W,

da, = (= yoa,+ yayag)dt + \J'%dVV;. (2.10

[30] in the equations to eliminate boundary terms, but thisyp,q nonvanishing noise correlations are given by

was not found to be necessary in these calculations. In other
words, while boundary terms are potentially present, the re-

(dW) =0,

sulting errors are expected to be of orae¥x or smaller,

which is completely negligible in typical quantum optical

systems where/ y>1.

C. The semiclassical theory

We can also transcribe the master equation esmamber

phase space evolution equation using the Wigner representg-

tion
* 1 N 6 * \oIZ5 @ iz
Pua,a*)=— [ dzxwz,z2*)e e, (2.7)

where yw(z,z*), the characteristic function for the Wigner
representation, is given by

Yl(z,2* ) = Tr(pg? d"+iz8) (2.8)

(dWdwW)=dt, i=0,1,2. (2.11

If we compare the two sets of It6 stochastic equations,
namely,(2.5) and(2.10, we notice that the main difference
between the two is in the structure of the noise terms. While
the noise terms in the positiie equationg2.5) depend on
e pumping amplitude and the nonlinear coupling constant,
ose in the Wigner representation do not. In fact they cor-
respond precisely to the noise terms that one adds, in the
linear case, in compliance with the fluctuation-dissipation
theorem.

In some sense, one can interpret the noise terms in the
Wigner case as accounting for vacuum fluctuations. How-
ever, the truncated Wigner theory must be treated cautiously,
since it ignores important third order correlations which are
not always negligible. These equations imply tHata;)
=(f;)=1/2 when there is no driving and no coupling, as
expected for a vacuum state in a symmetrically ordered rep-

This transcription is particularly useful for semiclassical resentation. However, a vacuum staten@ obtained semi-

treatments.

classically if there is any coupling, even with a vacuum

The equation for the Wigner function for the nondegener-input, which is an unphysical feature. The full Wigner theory
ate parametric amplifier that corresponds to the master equéas no such limitations: but it is no longer positive definite

tion (2.2) turns out to be

and therefore has no equivalent stochastic formulation.
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D. Comparison of methods methods, which we discuss later. The drawbacks are that
In both representations, the classical approximationtn€Se diagrammatic methods appear less systematic than
where all fluctuations are neglected, is equivalent to s:impl)p_haSe space methods, since certailn classes of Q|§1gram§ are
assuming that all operator mean values factorize. This giveglscarded, and the results usually diverge at the critical point.

us the classical nonlinear-optical equationsdgr (3;) in the

form Ill. OBSERVABLE MOMENTS AND EPR SPECTRA
dag In order to understand what types of calculation to carry
E:E‘ Yo% T X142, out for this system, it is important to identify operational
measurements, and relate these to operators and their corre-
P lations.
«; * it i ;
o+ X . (2.12) The positiveP stochastlc_ method directly reproduc_es the
ot normally ordered correlations and moments, while the

Wigner representation reproduces the symmetrically ordered
moments. Of course, commutation relations can always be
used to transform one type of ordering into the other. Further,
this threshold, the driving field is clamped @g= v/, with we also have to distinguish between the internal and external
an intracavity photon number &f,=y2/x2 while the signal operator moments, since measurements are norm_ally per-
formed on output fields that are external to the cavity. The

and idler intensities increase linearly with the input fiéld necessary formalism for treating external field spectra was
The critical input photon flux, assuming no other losses ex-: y 9 P

cept through the input/output coupling, is given by ggﬁgﬁzgg and developed by Yure2] and by Gardiner and

€2 Neyo As we shall see, there is a direct relationship between the
=—=— (2.13 output field spectra of a nondegenerate OPO and observable
2%0 2 criteria for EPR correlations and entanglement.
The Wigner truncation approximation does include quan-
tum fluctuation effects, but ignores higher order terms in an A. Internal moments

expansion in 1N;, which are important when calculating the H N f the i . d
corrections to the leading order linear fluctuations. € squeezing In terms of the intracavity quadrature co-

The positiveP equations provide a more systematic routevariances; corresponds to an instantaneous measurement of
to including quantum fluctuations, since the neglect ofthe field moments. A general quadrature covariance is de-

boundary terms is well justified in these calculations as lond"€d @S
asy/ xy=VN.> 1. If necessary, the technique can be checked Y
with the more precise stochastic gauge appro@tj. No 37 = (XOX5(0):), (3.9)
evidence was found that boundary terms were significa
here, even for the relatively small valueshyf=10° used in
the numerics. We will show that the truncated Wigner
method gives rise to clearly unphysical predictions at low
driving field, which does not occur with the positiReequa-
tions, given the parameters used here. Accordingly, W&, genote internal quadrature operators. Similarly, complex
mainly focus on the positiv® phase space method in this quadrature$35] are defined as
paper.

As an alternative, one might imagine that a direct numeri- . o o LA, ~, o~
cal calculation in a photon number basis would be useful, X’=€"%(t) +e'ga£(t):E[on_‘*Xg’fI(Xfwz‘xé)wz)],
provided the maximum photon number was small. We note
that in a three-mode system the Hilbert space dimension (3.3
scales a®> .., while the density matrix has® ., components
provided the boson number is boundedmy,. In practice,
one finds that typical experiments have,,=N; o 1 - .
=10°-1C. This implies that neither the full density matrix S = XU)XTt):) = = (XI + X§Z)
nor even the reduced wave function in a stochastic wave- 4

For small driving fields, the stable classical below-
threshold solutions areg=£&/y, and ay=a,=0. There is a
classical threshold or critical point &=&.=vyvy,/x. Above

r\there a measurement qﬁ <0 indicates intracavity squeez-
ing in modej, and we define

X{'=e%;(t) + €8] (t) (3.2

with a normally ordered intracavity variance of

function calculatiorf29] can in general be calculated directly L, cpmz Sprmizn

with current computers, for practical reasons of memory and + Z<1(X1 =X )%, (3.4
computational time. Direct number state methods are also

not convenient for analytical approximations. If such measurements were possible, they would include

Other techniques involve Feynmdar related diagram-  contributions from all frequencies. However, it is more typi-
matic techniques, using a hierarchy of correlation functionsal that one has access to spectrally resolved quadrature mea-
[31]. These methods give useful results below threshold, andurements of the output fields, and these are generally more
have similarities to perturbation theory using stochasticuseful as measures of entanglement and squeezing.

053807-4



CRITICAL FLUCTUATIONS AND ENTANGLEMENT IN... PHYSICAL REVIEW A 70, 053807(2004)

B. External spectra Yout= X2 ouQ), (3.10
The external field measurements are obtained from the L
input-output relation$32,33 which have the usual commutators[&"", YoU"]=2i B
N — . Since the mean values are zero for down-conversion be-
D) = V292 (1) - D1, (3.5  low threshold, the zero-frequency complex quadrature spec-

~in “ ou ) trum for the combined quadrature is

where ®; (t) and b; (t) are the input and output photon

fields, respectively, evaluated at the output-coupling mirror, VO(0) = (X? OU0)X T ot 31

and &;(t) is the intracavity photon field. The most efficient 0= © (0). (3.19

transport of squeezing is obtained if we assume that all thén particular, the most important spectra are the unsqueezed

signal losses occur through the output coupler, so that and squeezed spectra defined by

=" We will assume this to be the case for simplicity,

though the necessary correctigd®] for imperfect interfer- _ 1 cout, Soutp Jout _ outy2

ometers simply involve the ratig?/ ;. Vo) = 4<[Xl ST+ -V,
The measured output spectral covariah’ﬁeof a general

quadrature 1 . A . )
R ~ ~ Vw/2 o)== Yout+You 24 Xout_xou 2 . 3.1
X]-H out— —iecpi)ut(t)_,_eie(p])‘out(t) (3.6) © 4<[ 1 21] [X1 2 Py 3.12
can be written as In other words, the complex quadrature spectra simply
R A correspond to simultaneous sum and difference measure-
Vi‘?(w) = (AX? OUt(a,)ijf’ Uw')), (3.7  ments on the two observed output quadratures for the signal

. . . and idler, with the precise quadratures observed adjustable
where the fluctuationa X! °* are defined as X’ *'=X/ " via the local oscillator phase angte

—(X!°", ¢ is the phase angle related to a phase-sensitive The properties of external quadratures fov0 are ex-

local oscillator measurement, and the frequency argumert€rimentally important since technical noise normally pro-
denotes a Fourier transform: hibits direct quadrature measurementsaat0. Nevertheless,

even atw+# 0 the quadratures are decomposaldlg] into

pairs of mutually commuting Hermitian operators with simi-
lar properties to the intracavity quadrature operators, by us-
ing discrete sine and cosine transforms. These results there-
We also introduce complex quadratures and their Fouriefore hold at nonzero frequencies.

. 1 (72 o
XJ Mw) = = f dte "X °t). (3.9
T =T/2

transforms, which are useful for computational purposes: The correlations are closely related to those proposed by
h out . —igou A fout EPR. We will give more details in the next section, explain-
X? out= g 0poUt) + & PDI 1), ing the relationship of this type of measurement with the

EPR paradox and entanglement.
X6 out= o-i a(i)gut(t) + eia(i)lout(t)’
D. Stochastic mappings of operator moments

X out( ) = 1 f T2 dteiot? outp) _ We now wish to rel_ate these_observed operator correla-
112 ' tions with the stochastic correlations that are used to calcu-
late them via thee-number equivalences.
. 1 (72 o
XT0out(¢) = ?f dte@txt? out). (3.9 1. P representation
-T2

In the P representation normally ordered operator aver-

The spectral quadrature operat&i‘éout(w) are not formally ages_directly relate to stochastic moments of the posRive
Hermitian except ato=0. function:

C. Observable quadratures <:)A(f’(t))A(j”(t):> = (XIOX{(O)p, (3.13

In practice, one is mostly interested in external spectral
measurements taken over a long but finite interval, after
steady state is achieved. For output measurements averag%léa
over a long timeT, it is the low frequency part of the spec- 0_ S0t
trum that is the relevant quantity, as it usually determines the X = (age "+ % ¢ (3.14
maximum squeezing or entanglement possible. For simplic- The positiveP spectral correlations correspond to the nor-
ity, we will focus on thew=0 case, where we can define mally ordered, time-ordered operator correlations of the mea-

here the internal stochastic variables corresponding to the
dratures are denoted by

observabldrequency-domain quadrature operators as sured fields. This leads to the following well-known result
S out 50 ou for the general squeezing spectrum, as measured in an exter-
XPt= X7 ), nal homodyne detection scheme:
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V() 8w+ @) = 8 + 247 2% AR () AX (o)) predigtions by followi_ng an essentially classi.cal prescription;
(@ )= 3 C AX ) AX(@)e in which even the noise terms have a classical interpretation
(3.19 as corresponding a form of zero-point fluctuations. This de-
This calculation involves only the internal stochastic quadraSCTiption cannot be equivalent to quantum mechanics in gen-
ture spectral variables, defined as eral, but may provide results which, under some circum-
stances, turn out to be quite similar to the quantum

ijﬁ(“’):f q—;e‘“’t(xf’(t)%xf’(t))p). (3.16 mechanical results.
N2
Note that reflected vacuum input field terms from E85) IV EPR CORRELATIONS AND ENTANGLEMENT
do not contribute directly to this spectrum, as they have a A quantitative, experimentally testable criterion for the
vanishing normally ordered spectrum and are not correlategPR paradox was proposed in 1984]. It is important to
with the coherent amplitudes in the positieepresentation. understand the physical interpretation of this paradox. EPR
originally assumed local realism, and claimed that an obser-
vation of perfectly correlated positions and momenta would
In the Wigner representation, on the other hand, the moimply the incompleteness of quantum mechanics. A modern
ments and correlations with respect to the Wigner functiorinterpretation is that one can merely deduce itheonsis-
are directly related to averages of symmetrically ordered optency of local realism with quantum mechanical complete-
erators. It becomes necessary to rewrite the normally ordereakss, since local realism in Einstein’s original sense is no
internal field averages in terms of symmetrically ordered avionger widely accepted. This is a weaker paradox than the
erages using equal-time commutators. As a result the tw8ell inequality—which rules out all local realistic interpreta-

2. Wigner representation

spectral orderings are related by tions. However, the Bell inequality has not yet been violated,
o due to causality and/or measurement inefficiency issues
XX = (XOXI D= 8. (3.1  (though weaker inequalities have been violatéthe EPR

paradox with quadrature variables has the advantage that the

Similarly, for the normally ordered squeezing spectrum, . o . ) .
X . required degree of measurement efficiency is readily achiev-
as measured in an external homodyne detection scheme, on . . . . ;
has aple with photodetectors, since it does not require single-

photon counting.
Vi(w) 8w+ w') = (AX “{w)AX! “w)y. (3.18

Here we define Fourier transforms of fluctuations as previ-

ously, except with respect to stochastic output fields
. ) Consider two spatially separated subsystemA& ahd B.
X0 out _ i 0¢0u[(t) + el(?q)TOUt(t), (319) . L .~
i i i ObservablesX; (“position”) and Y; (“momentum’) are de-
where fined for subsystermd, where the two operators have a com-
— - mutator of[X;,Y;]=2i, so that by Heisenberg’s uncertaint
D) = 29y~ D(D). 320 2[ ! 2}] Y 9 /
principle A“X;AY; = 1. Suppose that the two subsystems are
It is essential to include the vacuum field contributionspartially correlated, as may occur in a real experiment, as
from reflected input fields as in E¢B.5), as these are corre- opposed to the ideal correlations in the EPR gedanken ex-

lated with the internal Wigner amplitudes and hence Comrib‘periment. One may still predict the result of measurergnt

ute significantly to the spectrum. In fact, these input field ased on the result of a causally separated measurefent
can be shown to correspond directly to the noise terms in th y separateq o
erformed atB. However, the prediction is imperfect, and

Wigner representation stochastic equations, leading to th as an associated inference error. Also, for a different choice

A. 1989 EPR criterion: Violation of an inferred Heisenberg
uncertainty principle

identification - )
of measuremenY, at B, suppose that one may predict the
awi _ V’E(D}“(t), (3.21  result of measurement; atA.
dt We define
where(I)}“(t) is ac-number amplitude correspondiriop the 5 )
Wigner representatignto the quantum vacuum input field, AianIZJ P(X2)A%(X1Xp)dXs,

and(@}"(H)®;"(t"))w=d(t-t')/2.

The fundamental property of the Wigner function is that
the ensemble average of any pol)_/nomial of 'the random vari- Aﬁ'\le:f P(Y,)A2(Y4|Y,)dYs,. (4.1)
ablesa and o* weighted by the Wigner density exactly cor-
responds to the Hilbert-space expectation of the correspond- -
ing symmetrized product of the annihilation and creatioan’rexz labels all outcomes of the measurem¥pat B, and
operators. Therefore, the truncated theory with a positivé® X1|X2) is the variance of the conditional distribution
Wigner function can be viewed as equivalent to a hidderP(Xl|2(2)’ whereX, is the conditional result of the measure-
variable theory, since one can obtain quadrature fluctuatiomentX; at A, given the measuremei at B. The probabil-
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ity P(X5) is the probability for a resulk, upon measurement B. An entanglement criterion based on the observation
of )‘(2_ of two-mode squeezing
Next, we define an inference variana® X, as the aver- Entanglement may be deduced through a whole set of

age variance of the conditionalinference variances criteria, of which the EPR criterio4.2) is one[11]. It is

A(X;| X,) for the predictioninference of the resultX; for X p(_)ssible to deduce entanglement through other crj(@ i .
(X1|Xz) . P " 8 - 1 without the need to prove the strong EPR correlations. This
at A, conditional on a measuremeint, at B. We define

LS 2 - has significance within quantum mechanics, but not neces-
A(Y1|Y2) similarly to represent the weighted variance asso<ayily the broader implications of the EPR criterion.
ciated with the predictioriinference of the resultY; at A, Such entanglement criteria, derived by Dwaral. and by
based on the result of the measuremerB.at Simon[14], are based on the proof of quantum inseparabil-
The 1989 inferred Heisenberg uncertainty principleity, where the failure of a separable density matrix
(HUP) criterion [11] to demonstrate EPR correlations is
p= 2 Prorpi (4.5
R

AineXiAinrY < 1. (4.2
(ZgPr=1) is proved. Particularly useful for our purposes is a

This EPR-style criterioni4.2) was not given in the origi- A . -
nal EPR paper, but has the useful property that it representsCa(Iterlon cons!dered by D uzet al. sufﬂment to demonsirate
entanglemenginseparability. We define

quantitative inequality that can be experimentally satisfied,
without having to construct an experimentally impossible X=X - X
. . . .. —\1 21

state with perfect correlations, as in the original proposal. As
an added advantage, the application of this inequality to elec- .
tromagnetic quadrature variables allows the use of efficient Y=Y +Y,. (4.6)
photodetection techniques, which makes this a completel
practical measure.

By contrast, the violation of a Bell inequality—while hav-
ing stronger consequences—is more difficult to achieve, ow- A26X + A26Y < 4. (4.7)
ing to poor efficiencies encountered in single-particle detec-
tors and polarizers. For either type of experiment, a crucial This observation of this entanglement criteri@n7) may
element is the causal separation of detectors. Without thigje identified as a “two-mode squeezing” criterion for en-
arguments using causality provide no constraints or inequalitanglement, since the individual criterion
ties at all.

%ntanglement is guaranteed provided that the sum of the
variances is bounded by

AZ5X < 2 (4.9

Linear estimate criterion is the criterion for the observation of a type of “two-mode
It is not always convenient to measure each conditionafdueezing.” In this way we see that fields that are two-mode
distribution P(X, [X,) and P(Y|Y,) and its associated mean SAueezed with respect to ba¥j—X; and Y, +Y,, each sat-
and variance. A simpler procedufél] is to propose that 1S7¥ind Eq.(4.8), are necessarily entangled.
upon a resulX, for the measurement Btthe predicted value
for the resultX; at A is given linearly by the estimat¥, C. EPR caorrelations of the nondegenerate
=cX,+d. The rms error in this estimate after optimizing tbr parametric system

IS The EPR correlations and entanglement were originally

R predicted for the outputs of the nondegenerate parametric
AZ Xy =(83) = (892, (4.3)  oscillator [10]. For intracavity entanglement, we define the
' quadrature phase amplitudes
where ,=X;—cX,. The best choice foc minimizesAﬁ]f'LX
and can be adjusted by experiment, or calculated as dis-

cussed in[11] to be c=((Xy,X,))/A2X,, where we define
(X1, X2» = (X Xo) = (X )(X).
Generally, the linear estimate will not be the best estimate

X, = (8, +2)),

Ql = (é'l - é.I)h ,

for the outcome af\, based on the result 8. Therefore Xz:(éz"”a;),
generally we havej,s; X=AX and Ajqr Y= AjcY [11]. )
The observation of Y,= (8- a)ii, (4.9

- - and identify correlated observables for the oscillator, so that
Ajng . X1Ainr L Y1 <1 (4.4 X, is correlated withX, andY; is correlated with ¥,. The
Heisenberg uncertainty relation for the orthogonal ampli-
will then also imply EPR correlations in the spirit of the EPR tudes of mode, is A2X;A%Y;=>1.
paradox. As explained in the previous section, for practical reasons
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it is preferable to use the correspondiogtput quadratures imply entanglement, they may not be necessary.

defined at or near zero frequency, which g(fét,\”(iout. How- It is always the case that for ideal squeezing both the
ever, the detailed arguments depend only on having the confinear EPR and the squeezed entanglement criteria are satis-
mutators defined above, together with the requirement ofied. Where one has additional loss, however, it is possible
causality—that is, the observations must take place witdor the squeezed-entanglement criter(éril6) to be satisfied
spacelike separations between the two detectors over tHdit not the EPR criterio4.10. Such situations have been
whole observation period. studied by Boweret al. [7]. Our situation is different again,
We calculate several types of EPR or entanglement medlue to the fact that the underlying quantum states undergo
sures. First we evaluate the 1989 inferred HUP EPR criteriofionlinear fluctuations and are inherently non-Gaussian.
(4.2) but using the linear estimate form, which will allow
demonstration of both entanglement and EPR correlationg, gpR correlations of two degenerate parametric oscillators
defined in the spirit of the original EPR paradox. In terms of _ _
quadrature phase amplitude measurements this strong crite- EPR correlations and entanglement can also be obtained

rion is satisfied when
AL OXUAT YO = A2 - e XS AK(YE - ¢ Y5 < 1.
(4.10
Now ¢, =(X9"", X3")/A2X3"" and c,=(Y§", Y3")/ A2Y3"" will

from the outputs of two degenerate parametric oscillators
[34]. This requires an additional interferometer, but it does
allow the use of type | frequency conversion, which may be
easier to obtain at some wavelengths. With this technique,

there are two squeezed outpt&sﬁ, which are then com-
bined at a beam splitter to obtain the EPR correlated modes.

minimize [11] the inference variances. Substituting for
andcy, we explicitly calculate

Aﬁm_xout: Azxtl)ut_ <Xout' Xgut>2/A2X<2)ut

The following choice of relative phases generates modes
a,,8, similar to those analyzed above for EPR and entangle-

(4.1 ment signatures:

and a,=(a-ib)/\2,
A%f’LYOUlz AZY(iUt— (Yout,ng>2/A2ng. (4'12)

For our particular system moments we haleg)=(a,)=0

a,=(a+ib)/\2.
and symmetry between tteg anda, modes, so that

(4.17

With this choice, we can immediately deduce the corre-

AUt = 1 (V+V2) =1 4.13 spondence between the input and output quadratures:
5 .
and XU= (Xa + Yp)/N2,
1
out yoouty — — _\/72 ~ ~ ~ —
X" = S (V0 =V, (4.19 o= (F, - X)IN2,

The linear inference EPR criterigd.4) is then equivalent to A o

XM= (X, = Y /N2,
2 —

A onut_ +— <1.

inf,

(4.15

ot S o
This criterion is not equivalent t64.2) which is based on Y2 = (Ya+ Xp)/V2. (4.18

the conditionals, since the linear estimate may not be the ] . )
best, in which case it is possible th@t2) is satisfied while ~Next, suppose the input fields are independently squeezed,
(4.10 is not, and we do not pick up EPR and entanglementvith reduced fluctuations in each, , quadrature. Calculat-
where it exists. Nevertheless the criteri@gnl5) is sufficient  ing correlations between the outputs gives
to prove EPR correlations and entanglement.

Second, we calculate the Duahal. two-mode squeezing
criterion (4.7) for entanglement. Written in terms of quadra-

1
V5E = ALAZ0G 3G + A%V + Y3
ture phase amplitude measurements, this becomes

1
= SV APV < 1. (4.19

er/2: %[AZ(Xgut_ Xgut) + AZ(Ygut_i_ ng)] <1.
4.16 This demonstrates that having two degenerate squeezed

' inputs can also generate EPR correlations. We note, however,
This criterion was explicitly shown to be both sufficient and that having two squeezed inputs will always require two
necessary for entanglement for the case of Gaussian stategmp beams. Thus, in comparing the results with these two
(for appropriately chosen quadratuxesieaning that in this methods, it is essential to use a comparison in which the total
case it would pick up any entanglement present. Our systeiimput photon flux is identical. The equation that should be
is not Gaussian, and while these criteria are still sufficient taised to compare with the input flux equati¢hl3) is then
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Ed? 2= 1/(2y,No).
| C| = Neyo, (4.20 | g ( %No) -
Yo This can also be written in terms of the input photon flux

requirement at threshold as

lpg=

where in this casépg is the total input flux used to drive
both the degenerate down-conversion cavities, gni$ the y
pump mode decay rate. g>=—.
The degenerate and nondegenerate routes to EPR correla- Al
tions and entanglement are equivalent only in the linearizedhat is, a smalleg? indicates a lower nonlinearity and hence
approximation. In the situation treated in this paper wheréncreasing input photon flux at threshold. We note here that
the fields and states have a non-Gaussian character, the tpcomparing these results with the degenerate OPO case, a
methods are generally inequivalent, as we show later. higher total input flux is needt%d for the same value of the
degenerate coupling parametgg,, if the standard defini-
V. BELOW-THRESHOLD INTRACAVITY MOMENTS tions[21] are adopted. This is sirﬁply due to the fact that one
In this section we use perturbation methods to study thénust drive two degenerate cavities instead of one to get cor-
nondegenerate parametric oscillator beyond the linearized réelated outputs. Hence, for the purposes of comparing these
gime both in the fully quantum mechanical approach usingwo methods of generating correlated fields, we will make
positive P representation and in the semiclassical approackomparisonsat the same total input fluxThis implies that,
based on the Wigner function. In the positiecase the for comparison purposes,
basic quantities investigated are correlations involving the
internal complex quadrature operatd35], mapped into sto- gDG =2¢°.
chastic variables according to 2'

1 In terms of these new variables, and a scaled timet,
Xo=(ag+ap), Yo==(ag—ap), the equations for the quadratures are given as follows.
: Positive P equations

1 dxo = = %[xo — 2 + (xx" - yy")]d,
X=(ay+a3), Y=i—(al—a;), X YlXo—2u yy)]

dyo == mlyo+ (xy" +yx)]dr,
1
X'=(ap+a;), Y =F(ap-aj). (5.1 1 g ——
! dx=| =X+ 2 (% +yYo) dr+—5[v’xO+iyodw1
In the truncated Wigne¢semiclassicalcase, we have a v

similar set withe;"” replaced bya, To avoid excessive nota- +\Xo— |y0dW2]
tion we use the same symbols for the quadrature variables in

the two cases, noting that in the semiclassical c&seX*
and Y*=Y*, dy= —y+ (Xyo = yXo) [d7~ |_[\Xo+ iyodw
For developing a systematic perturbation procedure, it
proves convenient to define - \X— IYOsz]
X
Ye= vl v, p=EIE, 9= ——, (5.2 1 ’
r T o2y A= | =X+ S(< R +y'yo) |dr+ %[v’xO +iygdw,
\r‘

and to introduce the following scaled quadrature variables: —_—
+ \Xo ~iyodwi],

Xo= 9\’/2_%Xo:
— + + 1 + + . 9 [
Yo=0V2%Yo, dy = [— y S5 XYo-y xO)}dr— E[VXO +iyodw,
x=gX, = xo—iyodwi], (5.4)
—ay where{(dw;dw,) =(dw;dw;)=dr.
y=g9v, Semiclassical equations
x*=gX", A = = %l[Xo = 2+ (X" = yy")Jd7+ \2g y,[dwp + dw],
y'=gY". (5.3 dyo == mlyo+ (xy" + yx")]dr - iV2gy,[dwp - dwp],
In terms of the physics involved, the expansion parameter
is proportional to the critical intracavity photon numby, dx=| - +1 + dr+ aldw: + dwi
aince X=| =X+ D000 +yyo) |d7+ gldw, + dwp],
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1 _ , O=2pu,
dy= {_Y"'E(XYO_Y)%)}dT_|g[dW1_dW2]a o
YO =xO0 =y =g, (5.9
dx* = {_ Xt + %(x*xo + y*yo)}dﬁ gldws, + dw;], The first order equations are
) = - e,
1 *
dy* = [- Y'+ (Yo~ y+xO)}dr- igldw, - dwi], dyp’ == %yg'dr,
(5.9 dxX® = - (1 - wxPdr+ V”Zdwxl,

where(dwdw) = &;dr.
In order to solve these coupled equations systematically,
we introduce a formal perturbation expansion in powers: of

dy® = - (1 + w)yPdr- iw"ﬂdWy1,

dxt® = - (1 - w)x*Vdr+ \*“’Zdsz,

— Ny, (N) —
= 209 i dy"® =~ (1 + )y Vdr - i\2udw,. (5.9
We have introduced new Wiener increments as
_ i . AWy ) (7) =[ AW (1) £ AW (7)]/12 and AWy (7)
Yk= n:09 Yi - (5.6 =[dw,(7) £dwj(7)]/v2, with the following correlations:

This expansion has the property that the zeroth order term (dwadwie) =dr,

corresponds to the large classical field of ordeg il the B
unscaled quadratures, the first order term involves quantum (dwy;dwy) = d7. (5.10
fluctuations of order 1, and the higher order terms correand all other correlations vanishing.

spond to nonlinear corrections to the quantum fluctuations of Equations(5.9) are the ones that are normally used to
orderg and higher. predict squeezing. They are linear stochastic equations with
nonclassical Gaussian white noise and, if higher order cor-
A. Matched power equations in the positiveP representation ~ '€ctions are ignored, yield an ideal squeezed state for the
_ ) o subharmonic quadratures together with an ideal coherent
Substituting Eq(5.6) in Eq. (5.4) and equating like pow- giate for the pump. Further, from the structure of these equa-
ers ofg on both sides, we obtain a hierarchy of stochastigjgng; jt is evident that the steady-state solution for the pump

Equda_ltions. The_seltl of eqluati(()jns thus r(})btaine(;l], if deg?redv C&bld quadratures, in this order, vanishes. We can, therefore,
e diagrammatically analyzed using the "stochastic diagramyithqut loss of generality, set all odd ordersx?,y™ for
method[36]. The zeroth order equations are g Y Xé Yo

the pump, and all even orders &ﬁ“),yi(”), i=1,2, for the

dX? = = [ X = 2 + (XOx*O — yOy*O)|dr, signal and idler fields, respectively, equal to zero. With this
in mind, the second order equations turn out to be
Ay = — 5[y + (x Oy O + yOx+O)]q AX2 = — [xD 4+ x VD — y Dy +D]g

dyg? == wlyg +x Py @ +yOx Wldr. (511

Since, in the present work, our primary interest is to cal-
culate the first nonlinear corrections to ideal squeezed-state

1
dx© = {_ X 4 E(X(O)Xg)) + Y(O)YBO))] dr,

1 behavior, to be consistent, we need to include contributions
0) = | — @ 4 Z (%00 _,(0(0) ) )
dy [ yor 2(X Yo 7Y %o )]dT’ from the third order equations as well. These equations are as
given below:
1
dx"® = [— X0+ SO + y+<°)yé°))] dr, dx® = [— (1-mx® + %(xﬂ)xg” ¥ y”)y&z))} dr
1
1 + ——[xPdwy, +iyPdw, ],
dy+(0) = |:_ y+(0) + 5(X+(O)yE)O) - y+(o)x(<)o))] dr. (5.7 2\“”2,Ua[ 0 kit 1Yo yl]

These equations correspond to the classical nonlinear 3 R NN NN
equations for the intracavity quadratures expressed in terms dy¥ =]~ (L +p)y® + E(X Yo —Xpy) |d7
of dimensionless scaled fields. Below threshold, the steady-
state solution of these equations is well known and is given 1 .

q 9 + —=[yPdw, — ixPdw,],

by 2\2u
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1 o 50 1 g’u Y
d +(3) — |:_ 1- +(3) 4 Z (3t (Dy(@) 4 (D)2 :|d YW =1+¢vYH) = + r
X0= | = (L= x4 2O+ y Oy | dr R R T Fw o b
2-p+ud)+4(1+
[ Z)dWX2+ iyE)Z)dWyZ]a + 7r( M QL ) ( M) (514)
2y m L+ wly +2(1+w]

Noting that g3;=2g” at the same total flux input, we can

1 ) ) now compare the degenerate and nondegenerate routes to
dy"@=| - (1+p)y" @+ E(X“Dyé)—x(%)y*(”) dr obtaining EPR correlations. By comparison, the degenerate
OPO vyields quite different nonlinear correctiofdl] near
threshold:
(Z)dwx2 ix(2dwy,]. (5.12
"2z 29°n K
. . . . (Yoo = 1+M+2(1+,L)(1 WAl y+2
This set of equations has nontrivial noise terms as they de- '
pend on the solutions of the stochastic equations at second . Ye(1 =+ p?) +2(1 +,u)} (5.1
order. (L+wly+21+wp)] '
. - ' For the same total photon flux input and damping ratio
B. Operator moments in the positiveP representation the nonlinear corrections are always larger for the degenerate

The set of stochastic equations together with the It6 rule§aS€: @ compared to the nondegenerate case. In the limit of
for variable changef28] permit computation of the operator v,—0, the nonlinear corrections are equivalent in the two
moments in a straightforward manner. Apart from their in-C2S€s: Questions relating to optimal output entanglement and
trinsic interest, they are useful in checking the correctness Os‘rqueezmg will be treated in the next section, using

somewhat more involved spectral calculations given later"€gueéncy-domain methods.
The results obtained are summarized below: The triple moment correlation for the quadratures scales

with 1/\N. and increases with driving field, since it is given
by

- 242

o=, =
A ) (5.1

1y — gM
<XY Yo) = (7r+2 .

gy ().

1+pup C. Matched power equations in semiclassical theory

Using the same technique of matching the powers),of
) we obtain the following set of equations in the semiclassical

(xWxrDy = (L theory. The zeroth order equation are

1-w)’
X = = %X = 2+ (XOxHO —y Oy O)d7,

AT e e Ay =~ HY + KOy + YOO .
X[ K%, Y2 —p+ p?) +4(1 "’M)}

Y +2 (1+M)[7r+2(1+:“)]

1

2
(XDy+Dy@) = M_z ( N/ ) (5.13 dy® = [ 0 4 = (x<o> ) — Oy )}dr,
1- v+ 2
The first quantity above pertains to the depletion of the pump dx" O = [_ X0 4 }(X+(0)X(o) + y+(0)y(0))]d7
that supplies energy for the subharmonic mode. The next two 2 0 0 ’

quantities are the squeezed and enhanced quadratures as
given by the linearized theory, while the fourth one is the 1
first correction to the linearized theory. The last one is the dy*® = {—y+(°)+ §(X+(O)YBO) —y+(°)x§)°))]dr. (5.17
steady-state triple quadrature correlation. This quantity has
been investigated earlier for its relevance in distinguishing As in the positiveP case, the steady-state solution of
guantum mechanics from a local hidden variable thgd87.  these equations is given by
The results above yield the following expression for the
steady-state intracavity squeezed quadrature fluctuations: Xg =2,
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0 =0 =0 =, (5.18 1
Yo y dy®d =] = (L + )y + E()((1)),5)2 + X2y — yWy@

The first order equations aren

d)é)l) =- yrxél)d7'+ 2y, dw,g, - y<2)xgl))} dr,

dyé)l) == 'Yry(()l)dT"' 2')’rdWyOa 1
_ dx*® = {_ (1-p)x+@ + E(X+(1>Xg)2) + X" Ox) 4 Dy
dxX® = — (1 - w)xPd7+ v2dw,,

_ + Oy }d 1
dy = = (1 + w)yPd7+ \2dw,, Yo ) |d

dx® = = (1 - wx* D7 + \2dwy,, 1
X dy+(3) =-(1+ /-L)y+(3> + 5(X+(1)yE)2) + X+(2)ygl) _ y+(l)X(()2)

dy*® = = (1 +w)y*Vdr+ 2dwy,, (5.19
where - y+(2)XE)l))] dr. (5.22
(AW odwyo) = (dwyadwyo) = (Wi dWo) = (dw,,dw,,) = dT,
(5.20 D. Operator moments in semiclassical theory
with all other correlations vanishing. In this case, the analogs of the results in Egl3 are

The equations above give the linearized theory. The firstound to be
nonlinear corrections come from the next two sets of equa-
tions given below. ~— 2u?
The second order equations are: X5 = 1_—,“2

X2 = = 5 [X2 + x VD — Dy g7,

1
Dy @y = [ T
dyg’ == %lys +xy @ +y O dr, b (1 - ,u) '
1
dx? = [- (1= X @+ S (U + y(l))’él))}dﬂ (y Dy = ( ! )
1+u)’
1
dy® = [— (1+m)y® + S (xyg - xg”yﬂ))}dr, NN ( ” )
Y s v 2
1 1 %
dx@ = [_ 1 = %@ 4 = (v Oy 4 Dy D }d , + ( i ) ,
-w) Y Yo %) |dr 201+ w?\y +2(1 + )
1
dy*® = [- (1+ )y + 2 yg! - Xél)y“l))}dr- (yDy*@y = — K 2( b ) ¥ E___
5.2 A1-w)A+w\y+2/ 2L-pw(l+p)
5.21
+ M Y
The third order equations are A1+p)d p+2+p ]’

XD = — XD + X OxH@ 4 xDyHD _ (D@ @+
<X(l)y+(l)y82)> + <X(2)y+(l)y(()l)> + <X(l)y+(2)ygl)>

Ay = — [y + xDy*@) 4 X@yHD) 4 YD+ 4y D]g ! ( " ) 5.23
1- :“2 Y +2) .
dx® = {— (1-wx® + }(x(l)xgz) + X OxD + yDy2 The main difference in these calculation, compared with
2 the positiveP results, appears in the nonlinear correction for

L the subharmonic squeezed quadrature. Up to second order in
+y@yi) |dr, g we have
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2

10

squeezing spectrum using the positRatochastic variables.

A. Fourier transforms

To perform calculations in the frequency domain, it
proves convenient to deal directly with the Fourier trans-

2 forms
N;\:‘_ 1071
- dr .
X(Q) = f —e%%(7)
N2
of the hierarchy of the stochastic equations obtained earlier.
10 . . , , The equations thus obtained contain noise terms
0 0.2 0.4 0.6 0.8 1
i

dr .
. . gx,y(Q) :f J—elﬂrgx,y(T)
FIG. 2. Graph of second order nonlinear correction to the V2

squeezing/entanglement momdﬁﬁ)NL vs driving field u, using ) ) ]
parameters 0§2=0.001 andy,=0.1, 1, 10. Upper lines have larger With the following correlations:

v, values. Solid lines are the positiv results, which vanish at

small driving field. Dotted lines are théess accuradesemiclassical (&(Q)) =0,
results, which do not vanish at small driving field.

(£aa(Q)£p2(2")) = Gapd(Q + Q). (6.1)

A~ 1
(YY" = E[gzwu)yﬂl))+94<y(2)y+(2)>+294<y(1)y+(3)>] In this context, for notational compactness it is useful to
introduce the standard notation for convolution of two func-
1 .\ o° { Y tions:
T+u 20+w)A-p) [ % +2
1+3u-2u?) +4u(l+
L @+ 3u =207 + A M)] (5.24
A+wly+2(1+w]
The similarities and disagreement between this result andVith this in mind, the stochastic equations obtained earlier
the positiveP expression for the same quantity deserve fur-May be rewritten in the frequency domain as follows.

ther comments, given in the concluding section. In particular, First order
we note that, while the linear terms agree, the nonlinear

[A*BI(Q) = f X @nB@-0n.
N2

terms are not in agreement below threshold. However, just XD (Q) = V2uéa ()
below threshold the two theories give essentially identical -iQ+1-w’
nonlinear corrections. There is good agreement also in the
limit y,—0. 2 0EA(Q
In the case of the triple moments, the discrepancy appears FO(Q) = - '\_f‘fM
to leading order, since the truncated Wigner theory predicts -iQ+1+uw)’
that
— ’/_

oo 4 \")/r/2> ey = N 2Ea(Q)

(XY Y0>—1_M2<—%+2 . (5.25 X" H(Q) Ci0+1-p)’
Here the semiclassical prediction is for a moment that is o
independent of input power gs— 0, which is physically SHO() = IV2uy5(Q) 6.2
unacceptablésince one expects a vacuum state in this limit yH(@Q)= (-iQ+1+p) (6.2

and inconsistent with the full quantum result of the positive
P theory, in Eq.(5.16). Second order
Comparisons of the positivé® and truncated Wigner

sgueezing moments are shown in Fig. 2. 32(Q) = - Yo [XD 53D D 5 §HD](Q)
° (-iQ+y) ’
VI. POSITIVE P SPECTRAL CORRELATIONS (D) 2ot 4 D) « (D)
: . ~@n __ N[XT Y XY UQ)
Next, we proceed to analyze spectral correlations which Yo (Q)=- . (6.3

. ) . ) -iQ+
are of direct relevance to comparison with experiments. In ( )

particular, we compute the nonlinear corrections to the Third order
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[X2 % (XY + gq/\2p) + Y2+ (O +ig, )\ zm](m

%3O
X = 2-iQ+1-p)
oy < I8 R+ Eal\2p) =%+ FP +i£,1/\2u)]()
y 2-iQ+1+pw) '
ooy o T O+ 65200 5 = G0+ 5 20
2(-iQ+1-pu) '
@ I K0+ g0\ 2p) =% GO + gl 2m]m>
yQ) = (6.4)
2(- |Q +1+u)
[
B. Output correlation spectrum .
The output spectral features are obtained by calculating +OG) Ay + ). 6.9

internal spectra, then transforming to the external correlatioc]_he correctness of the above expression can be checked by

spectra. - . .
P verifying the following equality:
1. Internal spectrum
i i DA aQ, sz 040
We first calculate the internal spectrum of the squeezed Y (Y™ (1)es= o) Von )T
NZm A\

field, which is given by(y(Q,)y"(Q,)):
T (Q)) = ATV QY H(Q,)) + g4[®<1><91>v+<3>
X (Qp)) + T Q)T O (Q) ] + -+ . (6.5)

The lowest order contribution is the usual result of the lin-
earized theory and is given by

XGPQYY(Qy)).  (6.10

2. Entanglement and external spectrum

The corresponding external squeezing spectrum is then

T | ¥ e
Q2+ (L+p? [Q2+ (1 +p)7P
Q@ +1-p%) (A-pty)d+p-0°
. wy(1-p?) L=+ (1 -u+y)?]
V() =1 - (6.7) (L+pt y)(L+p) - 02
Q%+ (1 +p)? - +0(gh. (6.11)
(L+w) L w02+ Lrpr | O
This equation gives the complete squeezing spectrum, in-
cluding all nonlinear corrections to ordef or 1/N.. The
2u8(Qq+ Q) linear part gives perfect squeezing fa=1 and (=0, as
[02+(1- w3 (6.8 expected from the linear theory.
! Once again, we can compare these results with those for
Taking the next order corrections into account, we find thathe degenerate route to obtaining EPR correlations, at the
the normally ordered internal spectral correlations of thesame total input flux. The external squeezing spectrum is

2u8(Qy + Q)
[QF+ (1 +w?]

In terms of the squeezing variance, this means that

V™) =1~

®<l)(91)y+(1)(92)> == (6.6

For comparison, note that the complementargsqueezed
spectrum to this order is

FV(QYX () =

squeezed quadrature are given by then
ST -2u 20°u*y, 4 8g*u?
Y(Q)YT(Q,):) = + /2 —1_ M g UV
YY) {Qz+(1 +u)? [Q%+(1+w)?)? Voe(()) =1 02+(1 +,u)2+ [Q%+(1+p)??
[<92+1-ﬂ2> @218 A-prpem-02
pn(l =) 2uy(1-pd)  (1-w[O2+(1-p+y)]
(L-pty)(L+p -0 _ (Arpty)Atp -0 (6.12
(1= WO+ (1~ pu+n%)?] (1+ w02+ (L +u+v)3 ] '
(L+p+y)L+p) -0 The nonlinear terms give corrections to perfect squeezing
(L+w)[ Q2+ (1 + u+ y)?] below threshold. Just as was found for the total squeezing
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u u

FIG. 3. Optimum squeezing witly?=0.001, =103, 1072, FIG. 4. Complementaryunsqueezedspectrum withg?=0.001,

10°%, 1, 10. Higher lines have larger values gf Here,v™2<1  %=10% 107 107" 1, 10. Lower lines have larger values gt
indicates squeezing and entanglement occurring at zero frequency.

The resulting behavior for the zero-frequency critical
moments, the nonlinear spectral corrections at the same totfilictuations is shown in Fig. 4. Near the critical point, higher
input flux are always smaller using a nondegenerate OPO agder terms are likely to become significant. The effects of

opposed to using a pair of degenerate OPO’s. these are treated in the next section.
At zero frequency, we find that
. 4 492,“ 4. Helsen.berg un.certa!nty pr|n0|ple.
Vi) =1~ 2t 4 We note here that in the linearized analysis the product of
(1+w* 1+p : : :
) these spectra corresponds to the Heisenberg uncertainty prin-

2 2+ inle:
|1+ w2+ ) (6.13 ciple:

1-wlA+y)2-p2]

4u 4u

72 — _

The resulting behavior for the optimum entanglement, VAQVTAQ) = {1 02+(1 +M)2} {1 + 02+ (1 —M)Z}
which is found at zero frequencgignoring complications

from technical noisg is shown in Fig. 3. We see that, as =1 (6.15

expected, the entanglement is not optimized at the critica\jear threshold where nonlinear effects are dominant, this
point, sir_we the nonlinear critical fluctuations spoil this be'relationship no longer holds. The zero-frequency nonlinear
fore an ideal entangled two-mode squeezed state WT_fﬁ uncertainty product is shown in Fig. 5. Just below the critical
=0 is achieved. Better entanglement is obtained Wieis  noint, the nonlinear corrections apparently predict an uncer-
reduced, as this minimizes the “information leakage” in thetainty product less than unity, which clearly implies that the

losses of the pump mode. In this limit, the only losses areecond order perturbation method breaks down here. An un-
through the signal and idler output ports, which are needed iBxpected feature of these results is thatfp= 1 the uncer-
order to have extracavity measurements.

This expression does not describe the spectrum very close

" ; S / 5
to the critical point, as it diverges at the threshold. This re-
gion requires a different kind of scaling and is discussed 4.5¢
later.
4.
3. Unsqueezed spectrum S 35
o el
The complementary or unsqueezed spectrum contains %"
critical fluctuations which grow extremely large near thresh- = 3f
old. For measurements of the maximum quadrature fluctua- & o5l
tions, this is given by =
4 4g?uy 2
V@) =1+ - :
O 2w (0% (- P 1.8
(@+1-4)  (1-p+y)(1-p) -0 1 '
B2y il (la i 05 0.6 0.7 0.8 0.9 1
pye(l=p%  (1=-pQ°+ (1= pn+%)] m
2
_ QHptyw-p) -0 _ (6.14) FIG. 5. Heisenberg uncertainty product witif=0.001, ¥
L+w[O%+ (L +u+v)?] =103, 1072 10, 1, 10. Higher lines have larger values gt
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tainty product remains close to unity for all driving fields, 10°
indicating that there is a near-minimum uncertainty state for

low frequency spectral measurements in the output fields.

This does not mean that there is a minimum uncertainty state

for the internal quadrature moments, since these are effec- 107"k
tively integrated over all frequencies, and involve different
quantum fields.

inf,L

5. EPR paradox 102

We also investigate the behavior of th#erred Heisen-
berg uncertainty product, which demonstrates that there is an
EPR paradox. In the original proposal, this uncertainty prod-
uct would be zero, as the original EPR paradox involved 1073 : : : :
perfect correlations. Instead, the minimum value of this 0.5 0.6 0.7 n 0.8 0.9 1
product is determined by the nonlinear critical fluctuations.
Due to symmetry, we need plot only the behavion\gf; | X° FIG. 6. Inferred quadrature uncertainty wii?=0.001,
in Fig. 6, using Eq(4.15 for the inferred variance in terms =103, 102 10, 1, 10. Higher lines have larger values f.
of the squeezed and unsqueezed spectral variances given WhenAZ; X°< 1, one may infer an EPR paradox.
Egs.(6.11) and(6.14).

This shows qualitatively similar behavior to the entangle- C. Triple spectral correlations
ment measure based on squeezing, and in fact for strong
entanglement the inferred uncertainty and squeezing me%—_
sures are simply related by '

Triple spectral correlations give quantum effects which
stinguish very strongly[37] between the full quantum
theory and the semiclassical approximation.

Aﬁ_'f’LXO: AV (6.16 Here, we calculate the internal quadrature triple spectral

correlation(X(4)¥*(2,)Yo(Q23)). To the lowest nonvanishin
We see that near threshold the EPR measure and squeeze . thisng(gi\izeﬁ (byZ)yO( I g

ing entanglement measure both show the existence of a
strongly entangled output beam, as one might expect. The (X(Q1)¥*(Q)¥5(Qs)) = g* &P (Q)T D(Q)V2(Q5)).

perturbation theory breaks down past the point where opti- (6.17)
mum entanglement is achieved, just below threshold, as we '
will show from direct numerical simulations. Substituting for?f)z), we have

NEIQYFT Q)XY # §*O +X FH](€y))

F(QIT V(TP () = : (6.18
(- Q3+ %)
[
and using the Gaussian nature of the stochastic variables in- D. Comparisons with simulations
volved to factorize the fourth order correlations we obtain In order to verify the accuracy of these analytic calcula-

tions, we performed extensive numerical simulations of the
full nonlinear stochastic simulations, using a differencing
technique as in earlier studies. We calculate only the nonlin-

<)A((Ql)\A(T(QZ)\A(O(Qg)> ear squeezing variance, defined as
2002y (v, +1Q2) Qg + Oy + Q) V(Q) =V™(Q) - VT2(Q)), (6.20
=— .
Val Q5+ FIO05+ (1 - w?[Q5+ (1 + w)?] This allows us to focus on the nonlinear corrections, which

(6.19 are relatively small except very near the critical threshold at
p=1. The numerical method has the advantage that, unlike
To check this result, we can evaluate the steady-statgerturbation theory, it is valid at all driving fields—even at
triple moment by integrating over all frequencies, and findthe critical point.
that we obtain the same result as given earlier by direct cal- The integration parameters used were step gize
culations in Eq.(5.16. This result will be compared later =0.001, with a time window of;,,,=10 000. The number of
with the corresponding result obtained in the semiclassicastochastic trajectories used for averaging was 2000, resulting
theory. in typical relative sampling errors of around 2%, as can be
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FIG. 7. Nonlinear squeezing spectrum Wijﬁ=(_).005, %=1, FIG. 9. Nonlinear squeezing spectrum witif=0.001, ¥
andu=0.5. The dashed line represents the analytical result and theg 01, andu=0.93. The dashed line represents the analytical result
noisy line the stochastic simulation. and the noisy line the stochastic simulation. This is the driving field

for optimum entanglement at zero frequency.
seen from the background sampling noise in some of the
resulting spectra. o in the critical region, we turn to a different asymptotic ex-
_T_yplcgl results are shown in Figs. 7 and 8 bel_ow, forpansion in a later section.
driving fields of ©=0.5,0.9. Note that these graphs include
only the nonlinear corrections. Excellent agreement is found
with the analytically predicted results for these values of the  vIl. SEMICLASSICAL SPECTRAL CORRELATIONS
driving field.
Fig%re 9 shows results slightly closer to threshold uat In this section we calculate approximate nonlinear results
=0.93, which is the optimum driving field for the parametersYs!nd & semiclassical approach. These are less reliable, espe-
chosen. cially well below threshold, but have an intuitive “classical’
At this point, a maximum error in the analytic result of interpretation in terms of the incoming vacuum fluctuations.

around 10* is found, due to the neglect of higher order

norylmear corrections. This indicates t_hat the_ analytic pertur- A. Wigner representation

bation theory is able to correctly predict nonlinear effects up ) ) ) )
to the optimum squeezing point, but starts to diverge beyond In t_he semlclassmfal theory, the _hlerar_chy of the stochastic
this point. The numerical results, however, are stablequations given earlier can be written, in the frequency do-

throughout the critical region. To obtain analytic predictionsmain, as follows.

First order
451 D) = 27160
4 (-iQ+y)’
3.5 y(l)(ﬂ) - 27r§¥0(9)
g 8 ° (-iQ+y)
®> 25 -
9 5 ')?(l)(Q) - \2§x1(9)
(-iQ+1-p)’
1.5
1 y(l)(Q) - M
0.5 (-iQ+1+p)’
-6 -4 -2 0 2 4 6 $H0(() = V2£,0(€2)
Q -iQ+1-w)’
FIG. 8. Nonlinear squeezing spectrum wigh=0.001,,=0.5, =
and «=0.9. The dashed line represents the analytical result and the y‘r(l)(Q) - ﬁ}& (7.2
noisy line the stochastic simulation. —iQ+1+uw)
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Second order 72 [X® *%1) -y *?Bl)](ﬂ)
y = .
TP 1 el A () 20-iQ+1+p)
(-iQ+7y) " X 3D + 740 5 §D]()
X(Q) = ,
(@) = - WD AT AR 50 2< 1Q+1-p)
0 - s ’
(=iQ+7y) o O« 0 70 « %)
yaQ) = . (7.2
’)"((2)(9) _ [;((l) *3{(()1) +y(l) *Vgl)](ﬂ) y 2(_ iQ+1+ /_L)
- 2-iQ+1-p) : Third order (signal and idler fields)
|
33(Q) = XY+ % +%@ x xg? + Y« J +§2 «Ff ](Q)
2[-iQ+1-pu]
SO(0) = [3'((1) *%2) +%@ **ygl) _'g,(z) *7(81) y(1) *7(82)](0)
yr= =10+ 1+ 4] !
20y < KR XD 150 P 45 (0
2A-iQ+1-pu] '
S Ol il i i 3 () (7.3
2[-iQ+1+u] ' '
I
B. Squeezing correlation spectrum A28 + Q)
It Oy} Q A St Skl B4
The spectrum of the squeezed quadrature, for instance, is( ( 1)X0 (@)= o 1)y \ 2= Q§+ y,z
given by (7.7
F(QDY Q) =TI (Q)VD(Q,)) The next contributions to the squeezed quadrature are
+g{(T?(QIYP(Q) 207 ?(Q,))
+FUQT Q) + FOQT (@)} _ 780+ Q) { 1-u+y,
T (7.4 QF+ (L+w? [ (L-w[OF+ (L -p+ y)?]

The lowest order contribution turns out to be l+puty (7.9
(1+w[QF+ (1 +u+%)?

G )= 2T (19 ang
Similarly, for the amplified quadrature, to the lowest order FP(QY Q) + FI(QY ()
we have _2p 8y + Q) » {_ A+wA-p+y)-QF
KO R(Qy) = 22Xt D) - [02+(1+w)?P (1-wW[Q2+(1-u+ 77
0k - | Ly =0F 20sw | o

_ _ L+wlQE+@L+u+ %) #(l-pd)
For the pump quadratures, there is no squeezing, to the low-
est order: which yield, for the internal spectral correlations,
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) (L=p+y) Q2 +[(1+w)?+2u(l+w)](L+u+y,)

Q2+ (L+p?  [Q2+(1 +m2]2{
L Atpr )2+ (1 - (L -p+y)
(1= [+ (L -+ )]

Y QYY*(Qy)) = {

% (1 _Mz)

] + 0(94)} 8y +Qp).

(L+w[O%+ (L +u+ )%

(7.10

This, in turn, gives the following expression for the external squeezing spectrum, obtained by including both internal fields

and the correlated reflected vacuum noise:

4 20°
Vﬂ'/z(Q) -1- M NG

2u(1+ 02— p)

LA -w @ -pty) - 2u10? +

07+ (Lrp? 02+ L+ )PP

|: 'yr(l_ﬂz)
(L-p+y)L+p+p?+ud)

(1-w[O%+ (1 -pu+ )]

. [(1+p)(L+u+y)+2p7]0%+

(L+p+y)(L+3u+pu®=ud)

(L+w[O%+ (L +u+y)%

+0(gY. (7.11)

It is interesting to note that this spectrum is quite differentquantum and semiclassical theories is that the former gives a

from that given by the positivd® representation whep
—0. However, near the threshold, that is, in the lirpit

zero spectrum in the absence of a driving field while the
latter, due to the “real” character of the semiclassical vacuum

—1, the two results show close agreement. As observed prédield, gives a nonzero spectrum. At threshold, the integrated

viously in [21], the physical difficulty with the truncated

moments in the two methods agree, but even near threshold

Wigner method is that it is essentially identical with stochas-there are large spectral discrepancies at finite frequencies of
tic electrodynamics. This means that even with no input ther€);= +,/2, which should be relatively simple to detect due to

are changes to the output spectrum caused by the effect
nonlinearities on the vacuum fluctuations, which behave a

ttie large size of the critical fluctuations. This provides a clear
distinction between the predictions of a full quantum theory

real classical fields. Just as in the degenerate case, this d@ad the truncated Wigner theotwhich is equivalent to a

pends on the damping ratig = v,/ y. For y,— 0, the pump
mode has negligible vacuum fluctuation inputs, sipge= 0,

so that the truncated Wigner method is more reliable in this

limit. Similarly, the approximations used in this method can
give nearly correct results at threshold, since here all photo
numbers are relatively large.

C. Triple spectral correlation

For the triple spectral correlation function in the truncated
Wigner method,

QDY (Q)Vo(Qa)) = RV Q)T V()5 (Qa))
+ g4 XV Q)T V()Y (Q9))
+ X2(Q)Y V()75 (Qa))
+ XY(Q)T P Q)Y (Q)}
(7.12

The term proportional tay® vanishes, and as a result the
lowest nontrivial order is found to be

XQDY(Q)Yo(Q0))
_ 29Vn (% = 1051 + 1)) 80, + Qp + Oy)
VAl Q5+ L02+ (1 - w?2[Q3+ (1 +w)?]
(7.13

This can be compared with the full quantum triple corre-
lations in EQ.(6.19. The essential difference between the

semiclassical or hidden variable approgch

VIIl. CRITICAL PERTURBATION THEORY

As we have seen, the perturbative corrections diverge at
the critical point(x=1) and a different approach is called for
to investigate the neighborhood of the threshold. To this end
we define new scaled quadratures variables, and use a differ-
ent expansion38] valid around the critical region. The new
pump mode variable, corresponds to the real scaled deple-
tion in the pump mode amplitude, relative to the undepleted
value at the critical point. The signal-idler quadrature vari-
ablesx,x" now describe the critical fluctuations scaled to be
of order 1 at the threshold.

A. Positive P representation

We scale the quadratures as

1| xX%o ] 27,
= __2 y y = _Ya
g{ y 0 g °
x=gX, y=V,

X" =\gX, yt=vY", (8.1)

and define also a new scaled time and driving field

-2l

=2 Z-1
L
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7= ygt. (8.2 tion does not cause the pump mode to deplete, we would
havexé°)=277, and at threshold the critical fluctuations»n

In terms of these variables, the positireequations become and x* would diffuse outward without any bound. When

gdxy = — y[Xo— 277+ xx" — gyy'ldr, depletion is included, the critical fluctuations in these
quadratures are finite, but very slowly varying compared to
gdyo = — ylyo + xy* +yx'1dr, those in the other variables. The pump field can therefore be

adiabatically eliminated to first order in the expansion.
1 Near thresholdgn< 1) the decay term in the unsqueezed
dx= §(x0x+ aYoy)d7+ dw,(7), quadraturex andx* is roughly -, which is of order 1. The
pump mode will be depleted, sg must be negative in order
for this to be stable. The scaled pump field decay, ig, and
gdy= {_ 2y + g(xyo _ yxo)}d7-+ dwgy(7), the squeeze(_j quadra;ure deca_y is qf ordg_lf/_y, is much
2 larger thang, it is possible to adiabatically eliminate both the
pump amplitude and the squeezed quadrature in the equa-
P N tions for the large critical fluctuationsandx*. Since we are
dx’ = E(XOX +9Yoy )7+ dw(7), taking the limit of smallg, we shall assume that this is pos-
sible to zeroth order in the asymptotic expansion. In the adia-
batic elimination, we must solve for the steady-state values
gdy* = {_ 2yt + 9(x+yo—y+Xo)}dT+ dw,(7). (8.3)  of the pumpx,, given an instantaneous first order critical
2 fluctuationx andx*. To leading(zeroth order this gives
The Gaussian white noise sources in these equations are no X = 257 - xOx+O (8.6)

longer uncorrelated and have the following properties:
Substituting in the equations forandx*, we find that

g
(dw, dw,,) = 2(1 + —Xo>dr, 1
x1UWx2 2 dx© = 77X(O) _ 5(X(O))ZX+(O) dr+ dVVgg),

9
dw,dwp) = = 2g( 1+ ZXo |dT,
(dwy dwi o) g( 2Xo> T dxt© = [77X+(°) _ %(x+(°))2x(°)}dr+ aw?. (8.7

(A dwyo) = (dvisodwy) = gyodT. (84 After the change of variables
We now develop a perturbation theory valid at threshold by %0 4 x+(0) %0 _ y+(0)
expanding in powers of, as in Eq.(5.6). The first set of X+:T x_=iT. (8.8

equations is obtained by neglecting all terms of ordesr
greater on the right sides of the two sets of equations giveEquation(8.7) can be put in the form
above:

. 1

gd>é,°) —_ 7,r[)(E)O) - 27+ xOx*Odr, X==7X- EX(X - X) + &), (8.9

gdyl? = — y [y + xOy+O 4 yOy+O]g 7 wherex is a two-component vector whose elements xare
andx_.
1 It is possible to write the Fokker-Planck equation for the

dx® = E[x<°)x§)°)]d7-+ dw'?, probability densityP(x,,x_,t), and look for the equilibrium

distribution of the formP(x)=N exd-U(x)], whereU(x) is

gy = - 2y(°)d7+dvv§,‘i), a potential function given by

1
1 U(x):nx-x+£—1(x-x)2. (8.10
dx" @ = §[x+(°)x(()°)]dr+ dwiy,
The variance of the critical fluctuations at the critical point

7n=0 is given by

gdy"©@ = - 2y*Odr+ dw?. (8.5
A 2 1.128...
A significant feature of these equations is that the quadra- (XX = —== (8.11
turesy© andy*® can be worked out without reference to gvm 9

any of other variables, and they give zero noise in the exter- By comparison, the corresponding intracavity critical

nal quadrature at zero frequency. Coupling between variablefyctuation variance in a degenerate OPO at a comparable
appears in high order expansions and generates the criticglput flux [21,39 is

fluctuations in the squeezed quadrature. =
We now consider what happens at or near the classical (= 2\2I'(3/4) _0.956... 8.12
threshold7=0. In a model where the subharmonic genera- DG g (1/4) g '
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B. Critical squeezing in positive P representation physically by recalling that as one passes the critical point

We can now find the steady-state variance of the squeezdfl® nondegenerate parametric amplifier develops a com-
quadrature at threshold. Because the fluctuations in thBletely different type of squeezinfl?] from the below-

squeezed quadrature are very small, we must work to highdpreshold case. Instead of quadrature squeezing, there is a
order in the asymptotic expansion to obtain a nontrivial re-Phase-number squeezing which develops above threshold.

sult. To achieve this, it is most useful to introduce equations' NS involves correlations which may be thought of as occu-
in the higher order momentgs/* andz=x"y+xy*. The corre-  PYing a curved region in the conventiond)Y phase space.

sponding stochastic equations are derived using Ito rules fofnus, the below-threshold correlations are destroyed by
the variable changes, so that phase curvature as well as by the obvious saturation effects

that are found in the degenerate case.

1
gd(yy") = - 2{1 +2yy"+ g(xO +XoyY' - 5y02>]d7+ ydw,
C. Wigner representation

+ytdwy,, As in the positiveP equations, we define new scaled
quadrature variables to avoid divergences at the critical
gdz= {— 27+ gyo(ZXX+ +2gyy" + 49)] d7+ xdw, + X" dwy, point:
— } X_XO -2 — “JZ_Y
+ gydwe, + gy*dwy. (8.13 =gl T T YT
Taking the expectation value at the steady stdtgy")) —
=0, we get the first order correction X=VgX y=Y,
g 1 (0) —
Wy == Aryyo-Syez) . (814 X"=\gX", y =Y". (8.20

In these new variables, the stochastic equations in the

The first term in the above expression gives the result Wigner representation are

1 1 + +
(L +yy")x @ = §<xo>(o) =9~ §<x(°)x+(°)>. (8.15 gdxy =~ ¥[Xo = 27+ xX" - gyy']d7 + dwg(7),
For the second term we must write the correlation from the gdyo=-yly+ \@(xy+ +yx")]d7+ dwe(7),
following equation:
- ; 1
gd(yo2) = = [(2 + %)yoz+ %, Z]d7+ 0(g) + (noise), dx= > (xox + Vayoy)dr+ dwga(7),
(8.16
and then we get 1~
y y gdy=| -2y + S(Ngxyo = gyX) | d7+ dwa(7),
O =220 = _ Yy 4 xy) 2O
(Yo2) 2+%< ) 2+%<(xy xy")%)
1 —
S (ENCNIUS (8.17) dxX"= S (xox" + \gyoy )7+ dwie(7),
2+
Finally we obtain, to first order, . I .
L L gdy’ =| = 2y"+ S(NgX"y0 = gy Xo) |d7+ dwi(7).
O g g Yr
Tyt :___< — Z(x0y+(0) )+_(_) (0 +(0)
D=5 =g\ 77 20X+ gl 2, J ) (8.21)
1 gn @*(2+2%)\ oo Here we use the same notation for scaled time and driving
=57 4178 2+, XX (8.18  field as in the positive® case. The noise correlations are
r

. given by
Noting that(XX") is given by Eq(8.11), this result shows
that the best squeezing, in tbgerall moment, for the intra-
cavity combined mode quadrature occurs just above thresh-
old where the last two terms nearly cancel. In the degenerate
OPO[21] the corresponding moment is given by

g7 . ¢ (2+3y

(dwyodwy,o) = 497gdr,
<dledWX2> = 2d’7',

(dw,dwyp) = 2gdr. (8.22

- 1 -
(Yoo) = 2 20 +E( >+ )<X§)G>' (8.19 To develop a perturbation scheme, we define the zero-
v v i order approximation to be the one in which terms of order
It should be recalled here that in this case the value oind greater than/g are neglected in the set of equations
(X35 is given by Eq.(8.12. We can interpret this result above:
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gy = = %Xy = 27+ XOx" @ dr + dwig, g 9( 2+2y,

~n 1
=222, 9
2 2+y,

ot
2 s )(XX ). (8.30

0) _ 0) 0),,+(0 0),+(0 0)
gd% T %[yg +xOy @ +yOx@ldr+d yo» This result is exactly the same as we obtained using the
positive P representation. We can infer that dropping third

d%O):l[xm)xf)o)]dﬁdvvfg), order terms in the Wigner phase space equation does not
2 have any direct consequence for the near-threshold analysis
of bipartite entanglement to this order of approximation. This
gdy? = - 2yOdr+ dWﬁ), is to be contrasted with the situation far below threshold,
where there are large differences in the nonlinear contribu-
1 tions, indicating a failure of the truncatédidden variablg
dx"©@ = =[x OxOd 7+ dwi?, Wigner theory.
2 The change in behavior has a simple mathematical origin.
Far below threshold, the signal and idler photon numbers are
gdy" = - 2y*Odr+dw). (8.23  small, which leads to a failure of the truncation approxima-
tion when using the semiclassical method. At the critical
point, photon numbers in all modes are relatively large, so
@e truncation approximation has less severe consequences.

It is worth noting that this set of equations, though having
the same structure as that in the positRease, has differ-
ences in the correlations of the noise terms. On adiabati
elimination of the pump and substituting this result info

and x*° we find the same equations as in the positRe IX. CONCLUSIONS
representation, since to zeroth order the correlation noise in )
both theories is identical. We have calculated the effects of nonlinear quantum fluc-

tuations in a nondegenerate parametric oscillator, both below
and at the classical threshold, using stochastic equations that

D. Critical squeezing in Wigner representation follow from the positiveP representation, as well as using
Now we proceed to calculatgy*) at threshold using the truncated Wigner methods. _ _
Wigner representation. Using the 1t6 rules we get The analytical results thus obtained are compared with

exact numerical simulations. The spectral entanglement and
. . \@ g. . squeezing in the output fields are maximized just below
gd(yy")2 - 4yy" + Yoz~ §2yy Xo + dwi; + dwp, threshold. This may be useful, for example, in cryptographic
applicationg39]. We find that at the critical poir(ju=1), the
(8.2 scaling behavior is quite different from the behavior below
where we have defineryx*+y*x, which obeys the follow- threshold, and must be calculated by using an asymptotic
ing equation: perturbation theory, valid at the threshold itself. The total
- - intracavity squeezing and entanglement moment is actually
gdz=—2z+ \gyxX" + gVvgyoyy + x"dwyl +gydw, + Xdw, minimized at a driving field just above threshold. This appar-
+gy"dw (8.25 ent paradox can be attributed to the fact that the critical fluc-
Xt ' tuations mostly tend to broaden the squeezing spectrum,
The squeezing variance at threshold in the steady state wghich has a strong effect at zero frequency but does not
obtained from the above equation taking expectation valuesliminish the total squeezing moment, integrated over all fre-
— guencies.
~_1 Vg 9. A similar analysis was carried out within the framework
vy = 2 " 8 (o2 4<x0yy ) (8.28 of the semiclassical theory arising from a truncation to a
Fokker-Planck form of the evolution equation in the Wigner
representation. Here, we found that well below threshold,
while the linear terms agreed with the full quantum calcula-

The last term of the above equation can be written as

g 97 9 . . : . .
Z(x(()o))(yy*)“)) =" §<X(O)X+(O)>, (8.27  tion, the nonlinear corrections tend to disagree, especially for
low subharmonic losses. However, at the critical point, the
and Eq.(8.24) gives the result situation changes. Here, where the dominant terms are non-

2,0 (2000 linear, we find excellent agreement _between the two mef[h-

(yo2)® = - \@7& " Y XX . (8.29  ©ds. While quantum fluctuations are indeed large at the criti-
2+, 2+, cal point, it appears that an equally acceptable interpretation

of the observed noise characteristics near the critical point
exists via a semiclassical model, which is essentially a kind

Using the results derived from the zero-order equations

<y§>(°) =2y, of hidden variable theory.
We have also compared these results with those obtained
(0) = 950 O\ /y/(0)y+(0) by using two degenerate parametric oscillators together with
@) 20 TYT, (8.29 a beam splitter. While this method creates similar entangle-
we finally obtain ment far below threshold, it is not identical at or near thresh-

053807-22



CRITICAL FLUCTUATIONS AND ENTANGLEMENT IN... PHYSICAL REVIEW A 70, 053807(2004)

old. In this region, where nonlinearities become importanthighly nonclassical signatures of quantum effects occur in
the approach of having two degenerate oscillators is quitéhe tripartite correlations, which are not described correctly
different from the nondegenerate case. We find that undeasy the semiclassical, hidden variable approach. Surprisingly,
comparable total input photon flux conditions the degeneratéhese nonclassical and non-Gaussian signatures persist well
method is generally less efficient at creating an entangledelow threshold, where one might have expected the usual
output. This is due to the fact that, as two pump beams argnearized analysis to be applicable. Large discrepancies in
needed, a larger nonlinearity is required for comparable enge third order spectral correlations are also found even very
tanglement in the output, when the total power input isgjose 1o threshold, where the relevant fluctuations are large.
matched with the nondegenerate case. This leads to larger 1ig suggests that experimental tests of the present theory

nonlinear corrections near threshold. These differences Vaaay be carried out near threshold—where large effects are

lcischel'?htek;z grrglto?:\:r ll?)\gsleoss?asp\lljvrglllja@?ﬁgésggji\/ee(jr,k)ln t?]reaicr; Fpr dicted in the enhanced critical fluctuations of the un-
y sLb%eezed quadrature and in the nonclassical triple spectral

a_nd output couplers, which could lead to different eff'c'en'correlations.
cies as well.
Our main result is that entanglement, EPR correlations,
and squeezing are optimized very near threshold. In this re- ACKNOWLEDGMENTS
gion, the semiclassical Wigner approximation can give an
excellent description of the squeezing and entanglement fluc- We gratefully acknowledge financial support from CNPq
tuations, although it is unable to correctly predict the nonlin-(Brazil) and the Australian Research Council Centre of Ex-
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