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We present a fully quantum mechanical treatment of the nondegenerate optical parametric oscillator both
below and near threshold. This is a nonequilibrium quantum system with a critical point phase transition, that
is also known to exhibit strong yet easily observed squeezing and quantum entanglement. Our treatment makes
use of the positiveP representation and goes beyond the usual linearized theory. We compare our analytical
results with numerical simulations and find excellent agreement. We also carry out a detailed comparison of
our results with those obtained from stochastic electrodynamics, a theory obtained by truncating the equation
of motion for the Wigner function, with a view to locating regions of agreement and disagreement between the
two. We calculate commonly used measures of quantum behavior including entanglement, squeezing, and
Einstein-Podolsky-Rosen(EPR) correlations as well as higher order tripartite correlations, and show how these
are modified as the critical point is approached. These results are compared with those obtained using two
degenerate parametric oscillators, and we find that in the near-critical region the nondegenerate oscillator has
stronger EPR correlations. In general, the critical fluctuations represent an ultimate limit to the possible
entanglement that can be achieved in a nondegenerate parametric oscillator.
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I. INTRODUCTION

Nonlinear optical devices such as optical parametric os-
cillators (OPO’s) and optical parametric amplifiers[1] have
been studied in the last 40 years to provide fundamental tests
of quantum mechanics, as well as for their technological ap-
plications in areas such as frequency conversion, low noise
optical measurement, squeezed light sources[2], and cryp-
tography. Nondegenerate optical parametric oscillators, in
particular, display intensity correlations[3] and very short
correlation times between the conjugate beams[4]. The en-
tangled nature of the photons in the down-converted light has
been instrumental in providing experimental demonstrations
[5–8] of the original Einstein-Podolsky-Rosen paradox and
other nonclassical features of quantum mechanics. In this
paper, we extend the linear theory of the nondegenerate OPO
to include nonlinear effects characteristic of the onset of
critical fluctuations near threshold, which is the physical fea-
ture that ultimately limits the maximum squeezing and en-
tanglement available.

As a fundamental application of these results, we point
out that in 1935 Einstein, Podolsky, and Rosen(EPR) [9]
presented their famous argument which demonstrates that lo-
cal realism is inconsistent with the completeness of quantum
mechanics. Their argument concerned two spatially sepa-
rated particles with perfectly correlated positions and mo-
menta, as predicted by quantum mechanics. Related correla-
tions for quadrature phase operators have been studied
[10–12] and experimentally confirmed for the output fields
of the nondegenerate parametric oscillator, both below[5,6]
and above[13] threshold. The study of these correlations has
so far been confined to regimes of operation where the quan-
tum fluctuations are small, so that a linearized analysis is
valid.

Closely linked with the phenomenon of EPR correlations
is that of entanglement, a key feature enabling many poten-

tial applications in the field of quantum information. Criteria
for proving entanglement using continuous variable(quadra-
ture phase amplitude) measurements have been developed by
Duan et al. and Simon[14]. Recent experiments[7,15,16]
have measured such continuous variable entanglement but
again the studies are limited to the regime of stable, linear-
izable quantum fluctuations. In this regime Gaussian statis-
tics apply, and the criterion developed can be shown[14] to
be both a necessary and sufficient condition for entanglement
in this case.

It is known from earlier theoretical analyses[17,18] of the
optical properties of nonlinear interferometers that, in the
linearized or Gaussian regime, a local realistic theory based
on the Wigner phase space representation gives the same
results for the correlations between signal and idler light
beams produced in nonlinear crystals[17,18]. While this is
also true of many correlations in second harmonic generation
[19], there are instances where significant differences exist
between the predictions of the two theories[20]. Here we
calculate the EPR and entanglement measures for non-
Gaussian fields, in precisely the type of environment where
non-Gaussian behavior is expected to occur
experimentally—that is, by considering nonlinear corrections
to the usual linearized approximations used to treat the OPO
below threshold.

In two recent papers[21,22] we have carried out a fully
quantum mechanical analysis of nonlinear effects and critical
fluctuations in a degenerate OPO using the positiveP repre-
sentation, and have investigated the squeezing spectra and
triple correlations in this system both analytically as well as
numerically. In particular, we have shown that, in this case,
while the full quantum theory and the semiclassical theory
disagree strongly far below threshold, there is a surprising
agreement between the two close to the threshold where
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quantum fluctuations are quite intense, characteristic of a
mixed state of light in this limit.

The aim of the present work is to present a similar analy-
sis for the case of a nondegenerate optical parametric oscil-
lator. Both the quantum mechanical and semiclassical analy-
ses are carried out in parallel and are compared with exact
numerical simulations. Special attention is paid to the behav-
ior of this system close to the critical point to ascertain the
limits of entanglement, EPR correlations, and squeezing in
this regime. We find that entanglement is optimized just be-
low the critical point for output mode entanglement and
squeezing, while the optimum internal squeezing and en-
tanglement is achieved just above threshold. The results are
compared with a configuration in which two degenerate
parametric oscillators are combined to obtain correlated out-
puts. We find that, while these have similar behavior in the
linearized region well below threshold, the single nondegen-
erate oscillator has greater optimal correlations near thresh-
old, given the same total pump power.

II. HAMILTONIAN AND STOCHASTIC EQUATIONS

We consider here the standard model for three modes
coupled by a nonlinear crystal inside a Fabry-Pérot interfer-
ometer with allowance made for coherent pumping and
damping due to cavity losses. The general development of
this type of open system theory is well described in the lit-
erature. This model implies certain restrictions on mode
spacing for its validity, since we assume only these three
modes are excited. A schematic diagram is shown in Fig. 1.

A. Hamiltonian

The Heisenberg-picture Hamiltonian that describes this
open system is given by[12,23,24]

Ĥ = o
i=0

2

"viâi
†âi + i"xsâ1

†â2
†â0 − â1â2â0

†d + i"sEe−iv0tâ0
†

− Eeiv0tâ0d + o
i=0

2

sâiĜi
† + âi

†Ĝid. s2.1d

HereE represents the external input field at a frequencyv0,

with â0, â1, and â2 representing the pump, signal, and idler
intracavity modes at frequenciesv0, v1, andv2, respectively,

wherev0=v1+v2. The termsĜi represent reservoir opera-
tors andx denotes the nonlinear coupling constant due to the
second order polarizability of the nonlinear crystal.

This is a driven system far from thermal equilibrium, so it
is not appropriate to assume a canonical ensemble. Instead,
the density matrix must be calculated as the solution of a
master equation in the Schrödinger picture. For simplicity,
we transform to a rotating frame in which the free-field time
evolution is removed. The master equation for the reduced
density operator, obtained after the elimination of the reser-
voirs using standard techniques[25], is given by

]r̂

]t
= xfâ1

†â2
†â0 − â1â2â0

†,r̂g + Efâ0
† − â0,r̂g + o

i=0

2

gis2âir̂âi
†

− âi
†âir̂ − r̂âi

†âid, s2.2d

wheregi are the damping rates for the mode amplitudes. For
simplicity, we assume thatg1=g2=g throughout this paper.

To handle master equations such as this it proves conve-
nient to transform them intoc-number Fokker-Planck equa-
tions or equivalently into stochastic equations using operator
representation theory. Here, as in our earlier work, we use
the positiveP representation for this purpose, and we also
compare these results with the approximate semiclassical
truncation of the Wigner representation.

B. The positiveP representation

Using the positiveP representation[26], we can include
correlations and fluctuations by expanding the density matrix
describing the system in an off-diagonal coherent state basis
as

r̂ =E ualksa+d * u
ksa+d * ual

P+sa,a+dd6ad6a+ s2.3d

where a;sa0,a1,a2d and a+;sa0
+,a1

+,a2
+d are two inde-

pendent triplets of complex variables. The functionPsa ,a+d
is a positive phase space distribution and, by virtue of Eq.
(2.3), satisfies the following Fokker-Planck equation[12],
assuming that boundary terms vanish on partial integration:

]P+

]t
= H ]

]a0
fg0a0 + xa1a2 − Eg +

]

]a0
+fg0a0

+ + xa1
+a2

+ − Eg

+
]

]a1
fg1a1 − xa0a2

+g +
]

]a1
+fg1a1

+ − xa0
+a2g

+
]

]a2
fg2a2 − xa0a1

+g +
]

]a2
+fg2a2

+ − xa0
+a1g

+
]2

]a1]a2
sxa0d +

]2

]a1
+]a2

+sxa0
+dJP+sa,a+,td. s2.4d

This can equivalently be written as the following set of Itô
stochastic equations[28]:

da0 = sE − g0a0 − xa1a2ddt,

FIG. 1. Schematic diagram of a driven nondegenerate paramet-
ric oscillator.
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da0
+ = sE * − g0a0

+ − xa1
+a2

+ddt,

da1 = s− g1a1 + xa2
+a0ddt + sxa0d1/2dW1,

da1
+ = s− g1a1

+ + xa2a0
+ddt + sxa0

+d1/2dW1
+,

da2 = s− g2a2 + xa1
+a0ddt + sxa0d1/2dW2,

da2
+ = s− g2a2

+ + xa1a0
+ddt + sxa0

+d1/2dW2
+, s2.5d

where

kdW1l = kdW2l = 0,

kdW1dW2l = kdW1
+dW2

+l = dt, s2.6d

with all other noise correlations vanishing. These equations
imply that kaiai

+l=kn̂il=0 when there is no driving field, as
physically expected for a vacuum state in a normally ordered
representation.

Numerical simulations of these stochastic trajectories con-
firm the assumption of asymptotically vanishing boundary
terms for the parameters we use, as the trajectories are
strongly bounded to a compact domain. This is similar to
earlier studies, where boundary terms were found to be ex-
ponentially suppressed for large damping[27]—i.e., gi @x,
which corresponds to typical experimental conditions for re-
alistic OPO’s in current use. At smaller damping rates, it
would become important to include stochastic gauge terms
[30] in the equations to eliminate boundary terms, but this
was not found to be necessary in these calculations. In other
words, while boundary terms are potentially present, the re-
sulting errors are expected to be of ordere−g/x or smaller,
which is completely negligible in typical quantum optical
systems whereg /x@1.

C. The semiclassical theory

We can also transcribe the master equation as ac-number
phase space evolution equation using the Wigner representa-
tion

PWsa,a * d =
1

p2E
−`

`

d6zxWsz,z * de−iz*·a*e−iz·a, s2.7d

wherexWsz,z* d, the characteristic function for the Wigner
representation, is given by

xWsz,z * d = Trsreiz*·â†+iz·âd. s2.8d

This transcription is particularly useful for semiclassical
treatments.

The equation for the Wigner function for the nondegener-
ate parametric amplifier that corresponds to the master equa-
tion (2.2) turns out to be

]PW

]t
= H ]

]a0
sg0a0 + xa1a2 − Ed +

]

]a0
* sg0a0

* + xa1
*a2

* − Ed

+
]

]a1
sg1a1 − xa2

*a0d +
]

]a1
* sg1a1

* − xa2a0
*d

+
]

]a2
sg2a2 − xa1

*a0d +
]

]a2
* sg2a2

* − xa1a0
*d

+ g0
]2

]a0]a0
* + g1

]2

]a1]a1
* + g2

]2

]a2]a2
*

+
x

4
S ]3

]a1]a2]a0
* +

]3

]a1
*]a2

*]a0
DJPW. s2.9d

If we drop the third order derivative terms, in an approxi-
mation valid in the limit of large photon number, we can
equate the resulting truncated Fokker-Planck equation de-
scribing the evolution of the Wigner function with a set of Itô
stochastic equations which read as follows:

da0 = sE − g0a0 − xa1a2ddt + Îg0dW0,

da0
* = sE * − g0a0

* − xa1
*a2

*ddt + Îg0dW0
* ,

da1 = s− g1a1 + xa2
*a0ddt + Îg1dW1,

da1
* = s− g1a1

* + xa2a0
*ddt + Îg1dW1

* ,

da2 = s− g2a2 + xa1
*a0ddt + Îg2dW2,

da2
* = s− g2a2

* + xa1a0
*ddt + Îg2dW2

* . s2.10d

The nonvanishing noise correlations are given by

kdWil = 0,

kdWidWi
*l = dt, i = 0,1,2. s2.11d

If we compare the two sets of Itô stochastic equations,
namely,(2.5) and (2.10), we notice that the main difference
between the two is in the structure of the noise terms. While
the noise terms in the positiveP equations(2.5) depend on
the pumping amplitude and the nonlinear coupling constant,
those in the Wigner representation do not. In fact they cor-
respond precisely to the noise terms that one adds, in the
linear case, in compliance with the fluctuation-dissipation
theorem.

In some sense, one can interpret the noise terms in the
Wigner case as accounting for vacuum fluctuations. How-
ever, the truncated Wigner theory must be treated cautiously,
since it ignores important third order correlations which are
not always negligible. These equations imply thatkaiai

+l
=kn̂il=1/2 when there is no driving and no coupling, as
expected for a vacuum state in a symmetrically ordered rep-
resentation. However, a vacuum state isnot obtained semi-
classically if there is any couplingx, even with a vacuum
input, which is an unphysical feature. The full Wigner theory
has no such limitations: but it is no longer positive definite
and therefore has no equivalent stochastic formulation.
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D. Comparison of methods

In both representations, the classical approximation,
where all fluctuations are neglected, is equivalent to simply
assuming that all operator mean values factorize. This gives
us the classical nonlinear-optical equations forai =kâil in the
form

]a0

]t
= E − g0a0 − xa1a2,

]ai

]t
= − gai + xa3−i

* a0. s2.12d

For small driving fields, the stable classical below-
threshold solutions area0=E /g0 and a1=a2=0. There is a
classical threshold or critical point atE=Ec=gg0/x. Above
this threshold, the driving field is clamped atac=g /x, with
an intracavity photon number ofNc=g2/x2, while the signal
and idler intensities increase linearly with the input fieldE.
The critical input photon flux, assuming no other losses ex-
cept through the input/output coupling, is given by

Ic =
uEcu2

2g0
=

Ncg0

2
. s2.13d

The Wigner truncation approximation does include quan-
tum fluctuation effects, but ignores higher order terms in an
expansion in 1/Nc, which are important when calculating the
corrections to the leading order linear fluctuations.

The positiveP equations provide a more systematic route
to including quantum fluctuations, since the neglect of
boundary terms is well justified in these calculations as long
asg /x=ÎNc@1. If necessary, the technique can be checked
with the more precise stochastic gauge approach[30]. No
evidence was found that boundary terms were significant
here, even for the relatively small values ofNc.103 used in
the numerics. We will show that the truncated Wigner
method gives rise to clearly unphysical predictions at low
driving field, which does not occur with the positiveP equa-
tions, given the parameters used here. Accordingly, we
mainly focus on the positiveP phase space method in this
paper.

As an alternative, one might imagine that a direct numeri-
cal calculation in a photon number basis would be useful,
provided the maximum photon number was small. We note
that in a three-mode system the Hilbert space dimension
scales asnmax

3 , while the density matrix hasnmax
6 components

provided the boson number is bounded bynmax. In practice,
one finds that typical experiments havenmax.Nc
.103–109. This implies that neither the full density matrix
nor even the reduced wave function in a stochastic wave-
function calculation[29] can in general be calculated directly
with current computers, for practical reasons of memory and
computational time. Direct number state methods are also
not convenient for analytical approximations.

Other techniques involve Feynman(or related) diagram-
matic techniques, using a hierarchy of correlation functions
[31]. These methods give useful results below threshold, and
have similarities to perturbation theory using stochastic

methods, which we discuss later. The drawbacks are that
these diagrammatic methods appear less systematic than
phase space methods, since certain classes of diagrams are
discarded, and the results usually diverge at the critical point.

III. OBSERVABLE MOMENTS AND EPR SPECTRA

In order to understand what types of calculation to carry
out for this system, it is important to identify operational
measurements, and relate these to operators and their corre-
lations.

The positiveP stochastic method directly reproduces the
normally ordered correlations and moments, while the
Wigner representation reproduces the symmetrically ordered
moments. Of course, commutation relations can always be
used to transform one type of ordering into the other. Further,
we also have to distinguish between the internal and external
operator moments, since measurements are normally per-
formed on output fields that are external to the cavity. The
necessary formalism for treating external field spectra was
introduced and developed by Yurke[32] and by Gardiner and
Collett [33].

As we shall see, there is a direct relationship between the
output field spectra of a nondegenerate OPO and observable
criteria for EPR correlations and entanglement.

A. Internal moments

The squeezing in terms of the intracavity quadrature co-
variances corresponds to an instantaneous measurement of
the field moments. A general quadrature covariance is de-
fined as

Sij
u = k:X̂i

ustdX̂j
ustd:l, s3.1d

where a measurement ofSjj
u ,0 indicates intracavity squeez-

ing in modej , and we define

X̂j
u = e−iuâjstd + eiuâj

†std s3.2d

to denote internal quadrature operators. Similarly, complex
quadratures[35] are defined as

X̂u = e−iuâ1std + eiuâ2
†std =

1

2
fX̂1

u + X̂2
u + isX̂1

u+p/2 − X2
u+p/2dg,

s3.3d

with a normally ordered intracavity variance of

Su = k:X̂ustdX̂†ustd:l =
1

4
k:sX̂1

u + X̂2
ud2:l

+
1

4
k:sX̂1

u+p/2 − X̂2
u+p/2d2:l. s3.4d

If such measurements were possible, they would include
contributions from all frequencies. However, it is more typi-
cal that one has access to spectrally resolved quadrature mea-
surements of the output fields, and these are generally more
useful as measures of entanglement and squeezing.
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B. External spectra

The external field measurements are obtained from the
input-output relations[32,33]

F̂ j
outstd = Î2g j

outâjstd − F̂ j
instd, s3.5d

where F̂ j
instd and F̂ j

outstd are the input and output photon
fields, respectively, evaluated at the output-coupling mirror,
and âjstd is the intracavity photon field. The most efficient
transport of squeezing is obtained if we assume that all the
signal losses occur through the output coupler, so thatg1
=g1

out. We will assume this to be the case for simplicity,
though the necessary corrections[12] for imperfect interfer-
ometers simply involve the ratiog j

out/g j.
The measured output spectral covarianceVij

u of a general
quadrature

X̂j
u out = e−iuF̂ j

outstd + eiuF̂ j
†outstd s3.6d

can be written as

Vij
u svd = kDX̂i

u outsvdDX̂j
u outsv8dl, s3.7d

where the fluctuationsDX̂j
u out are defined asDX̂j

u out=X̂j
u out

−kX̂j
u outl, u is the phase angle related to a phase-sensitive

local oscillator measurement, and the frequency argument
denotes a Fourier transform:

X̂j
u outsvd =

1

T
E

−T/2

T/2

dteivtX̂j
u outstd. s3.8d

We also introduce complex quadratures and their Fourier
transforms, which are useful for computational purposes:

X̂u out = e−iuF̂1
outstd + eiuF̂2

†outstd,

X̂†u out = e−iuF̂2
outstd + eiuF̂1

†outstd,

X̂u outsvd =
1

T
E

−T/2

T/2

dte−ivtX̂u outstd,

X̂†u outsvd =
1

T
E

−T/2

T/2

dteivtX̂†u outstd. s3.9d

The spectral quadrature operatorsX̂i
u outsvd arenot formally

Hermitian except atv=0.

C. Observable quadratures

In practice, one is mostly interested in external spectral
measurements taken over a long but finite interval, after a
steady state is achieved. For output measurements averaged
over a long timeT, it is the low frequency part of the spec-
trum that is the relevant quantity, as it usually determines the
maximum squeezing or entanglement possible. For simplic-
ity, we will focus on thev=0 case, where we can define
observablefrequency-domain quadrature operators as

X̂i
out = X̂i

0 outs0d,

Ŷi
out = X̂i

p/2 outs0d, s3.10d

which have the usual commutators offX̂i
out,Ŷj

outg=2idi j .
Since the mean values are zero for down-conversion be-

low threshold, the zero-frequency complex quadrature spec-
trum for the combined quadrature is

Vus0d = kX̂u outs0dX̂†u outs0dl. s3.11d

In particular, the most important spectra are the unsqueezed
and squeezed spectra defined by

V0s0d =
1

4
kfX̂1

out + X̂2
outg2 + fŶ1

out − Ŷ2
outg2l,

Vp/2s0d =
1

4
kfŶ1

out + Ŷ2
outg2 + fX̂1

out − X̂2
outg2l. s3.12d

In other words, the complex quadrature spectra simply
correspond to simultaneous sum and difference measure-
ments on the two observed output quadratures for the signal
and idler, with the precise quadratures observed adjustable
via the local oscillator phase angleu.

The properties of external quadratures forvÞ0 are ex-
perimentally important since technical noise normally pro-
hibits direct quadrature measurements atv=0. Nevertheless,
even atvÞ0 the quadratures are decomposable[12] into
pairs of mutually commuting Hermitian operators with simi-
lar properties to the intracavity quadrature operators, by us-
ing discrete sine and cosine transforms. These results there-
fore hold at nonzero frequencies.

The correlations are closely related to those proposed by
EPR. We will give more details in the next section, explain-
ing the relationship of this type of measurement with the
EPR paradox and entanglement.

D. Stochastic mappings of operator moments

We now wish to relate these observed operator correla-
tions with the stochastic correlations that are used to calcu-
late them via thec-number equivalences.

1. P representation

In the P representation normally ordered operator aver-
ages directly relate to stochastic moments of the positiveP
function:

k:X̂j
ustdX̂j

ustd:l = kXj
ustdXj

ustdlP, s3.13d

where the internal stochastic variables corresponding to the
quadratures are denoted by

Xj
u = sa je

−iu + a j
+eiud. s3.14d

The positiveP spectral correlations correspond to the nor-
mally ordered, time-ordered operator correlations of the mea-
sured fields. This leads to the following well-known result
for the general squeezing spectrum, as measured in an exter-
nal homodyne detection scheme:
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Vij
u svddsv + v8d = di j + 2Îgi

outg j
outkDX̃i

usvdDX̃j
usv8dlP.

s3.15d

This calculation involves only the internal stochastic quadra-
ture spectral variables, defined as

DX̃j
usvd =E dt

Î2p
eivtsXj

ustd − kXj
ustdlPd. s3.16d

Note that reflected vacuum input field terms from Eq.(3.5)
do not contribute directly to this spectrum, as they have a
vanishing normally ordered spectrum and are not correlated
with the coherent amplitudes in the positiveP representation.

2. Wigner representation

In the Wigner representation, on the other hand, the mo-
ments and correlations with respect to the Wigner function
are directly related to averages of symmetrically ordered op-
erators. It becomes necessary to rewrite the normally ordered
internal field averages in terms of symmetrically ordered av-
erages using equal-time commutators. As a result the two
spectral orderings are related by

k:X̂i
ustdX̂j

ustd:l = kXi
ustdXj

ustdlW − di j . s3.17d

Similarly, for the normally ordered squeezing spectrum,
as measured in an external homodyne detection scheme, one
has

Vij
u svddsv + v8d = kDX̃i

u outsvdDX̃j
u outsv8dlW. s3.18d

Here we define Fourier transforms of fluctuations as previ-
ously, except with respect to stochastic output fields

Xj
u out = e−iuF j

outstd + eiuF j
†outstd, s3.19d

where

F j
outstd = Î2gouta j − F j

instd. s3.20d

It is essential to include the vacuum field contributions
from reflected input fields as in Eq.(3.5), as these are corre-
lated with the internal Wigner amplitudes and hence contrib-
ute significantly to the spectrum. In fact, these input fields
can be shown to correspond directly to the noise terms in the
Wigner representation stochastic equations, leading to the
identification

dWj

dt
= Î2F j

instd, s3.21d

whereF j
instd is a c-number amplitude corresponding(in the

Wigner representation) to the quantum vacuum input field,
and kF j

instdF j
* inst8dlW=dst− t8d /2.

The fundamental property of the Wigner function is that
the ensemble average of any polynomial of the random vari-
ablesa anda* weighted by the Wigner density exactly cor-
responds to the Hilbert-space expectation of the correspond-
ing symmetrized product of the annihilation and creation
operators. Therefore, the truncated theory with a positive
Wigner function can be viewed as equivalent to a hidden
variable theory, since one can obtain quadrature fluctuation

predictions by following an essentially classical prescription;
in which even the noise terms have a classical interpretation
as corresponding a form of zero-point fluctuations. This de-
scription cannot be equivalent to quantum mechanics in gen-
eral, but may provide results which, under some circum-
stances, turn out to be quite similar to the quantum
mechanical results.

IV. EPR CORRELATIONS AND ENTANGLEMENT

A quantitative, experimentally testable criterion for the
EPR paradox was proposed in 1989[11]. It is important to
understand the physical interpretation of this paradox. EPR
originally assumed local realism, and claimed that an obser-
vation of perfectly correlated positions and momenta would
imply the incompleteness of quantum mechanics. A modern
interpretation is that one can merely deduce theinconsis-
tency of local realism with quantum mechanical complete-
ness, since local realism in Einstein’s original sense is no
longer widely accepted. This is a weaker paradox than the
Bell inequality—which rules out all local realistic interpreta-
tions. However, the Bell inequality has not yet been violated,
due to causality and/or measurement inefficiency issues
(though weaker inequalities have been violated). The EPR
paradox with quadrature variables has the advantage that the
required degree of measurement efficiency is readily achiev-
able with photodetectors, since it does not require single-
photon counting.

A. 1989 EPR criterion: Violation of an inferred Heisenberg
uncertainty principle

Consider two spatially separated subsystems atA andB.

ObservablesX̂1 (“position”) and Ŷ1 (“momentum”) are de-
fined for subsystemA, where the two operators have a com-

mutator offX̂1,Ŷ1g=2i, so that by Heisenberg’s uncertainty

principleD2X̂1D2Ŷ1ù1. Suppose that the two subsystems are
partially correlated, as may occur in a real experiment, as
opposed to the ideal correlations in the EPR gedanken ex-

periment. One may still predict the result of measurementX̂1,

based on the result of a causally separated measurementX̂2
performed atB. However, the prediction is imperfect, and
has an associated inference error. Also, for a different choice

of measurementŶ2 at B, suppose that one may predict the

result of measurementŶ1 at A.
We define

Dinf
2 X1 =E PsX2dD2sX1uX2ddX2,

Dinf
2 Y1 =E PsY2dD2sY1uY2ddY2. s4.1d

HereX2 labels all outcomes of the measurementX̂2 at B, and
D2sX1uX2d is the variance of the conditional distribution
PsX1uX2d, whereX1 is the conditional result of the measure-

mentX̂1 at A, given the measurementX̂2 at B. The probabil-
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ity PsX2d is the probability for a resultX2 upon measurement

of X̂2.

Next, we define an inference varianceDinf
2 X̂1 as the aver-

age variance of the conditional(inference) variances

DsX1uX2d for the prediction(inference) of the resultX1 for X̂1

at A, conditional on a measurementX̂2 at B. We define
DsY1uY2d similarly to represent the weighted variance asso-

ciated with the prediction(inference) of the resultŶ1 at A,
based on the result of the measurement atB.

The 1989 inferred Heisenberg uncertainty principle
(HUP) criterion [11] to demonstrate EPR correlations is

DinfX1DinfY1 , 1. s4.2d

This EPR-style criterion(4.2) was not given in the origi-
nal EPR paper, but has the useful property that it represents a
quantitative inequality that can be experimentally satisfied,
without having to construct an experimentally impossible
state with perfect correlations, as in the original proposal. As
an added advantage, the application of this inequality to elec-
tromagnetic quadrature variables allows the use of efficient
photodetection techniques, which makes this a completely
practical measure.

By contrast, the violation of a Bell inequality—while hav-
ing stronger consequences—is more difficult to achieve, ow-
ing to poor efficiencies encountered in single-particle detec-
tors and polarizers. For either type of experiment, a crucial
element is the causal separation of detectors. Without this,
arguments using causality provide no constraints or inequali-
ties at all.

Linear estimate criterion

It is not always convenient to measure each conditional
distributionPsX1uX2d andPsY1uY2d and its associated mean
and variance. A simpler procedure[11] is to propose that
upon a resultX2 for the measurement atB the predicted value
for the resultX1 at A is given linearly by the estimateXest
=cX2+d. The rms error in this estimate after optimizing ford
is

Dinf,L
2 X̂1 = kd0

2l − kd0l2, s4.3d

whered0=X̂1−cX̂2. The best choice forc minimizesDinf,L
2 X̂

and can be adjusted by experiment, or calculated as dis-

cussed in[11] to be c=skX̂1,X̂2ld /D2X̂2, where we define

kX̂1,X̂2l=kX̂1X̂2l−kX̂1lkX̂2l.
Generally, the linear estimate will not be the best estimate

for the outcome atA, based on the result atB. Therefore

generally we haveDinf,LX̂ùDinfX̂ and Dinf,LŶùDinfŶ [11].
The observation of

Dinf,LX̂1Dinf,LŶ1 , 1 s4.4d

will then also imply EPR correlations in the spirit of the EPR
paradox.

B. An entanglement criterion based on the observation
of two-mode squeezing

Entanglement may be deduced through a whole set of
criteria, of which the EPR criterion(4.2) is one [11]. It is
possible to deduce entanglement through other criteria[14]
without the need to prove the strong EPR correlations. This
has significance within quantum mechanics, but not neces-
sarily the broader implications of the EPR criterion.

Such entanglement criteria, derived by Duanet al. and by
Simon [14], are based on the proof of quantum inseparabil-
ity, where the failure of a separable density matrix

r = o
R

PRrR
1rR

2 s4.5d

soRPR=1d is proved. Particularly useful for our purposes is a
criterion considered by Duanet al. sufficient to demonstrate
entanglement(inseparability). We define

dX̂ = X̂1 − X̂2,

dŶ = Ŷ1 + Ŷ2. s4.6d

Entanglement is guaranteed provided that the sum of the
variances is bounded by

D2dX̂ + D2dŶ , 4. s4.7d

This observation of this entanglement criterion(4.7) may
be identified as a “two-mode squeezing” criterion for en-
tanglement, since the individual criterion

D2dX̂ , 2 s4.8d

is the criterion for the observation of a type of “two-mode
squeezing.” In this way we see that fields that are two-mode
squeezed with respect to bothX1−X2 and Y1+Y2, each sat-
isfying Eq. (4.8), are necessarily entangled.

C. EPR correlations of the nondegenerate
parametric system

The EPR correlations and entanglement were originally
predicted for the outputs of the nondegenerate parametric
oscillator [10]. For intracavity entanglement, we define the
quadrature phase amplitudes

X̂1 = sâ1 + â1
†d,

Ŷ1 = sâ1 − â1
†d/i ,

X̂2 = sâ2 + a2
†d,

Ŷ2 = sâ2 − â2
†d/i , s4.9d

and identify correlated observables for the oscillator, so that
X1 is correlated withX2 andY1 is correlated with −Y2. The
Heisenberg uncertainty relation for the orthogonal ampli-
tudes of modeâ1 is D2X1D2Y1ù1.

As explained in the previous section, for practical reasons
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it is preferable to use the correspondingoutput quadratures

defined at or near zero frequency, which areX̂i
out,Ŷi

out. How-
ever, the detailed arguments depend only on having the com-
mutators defined above, together with the requirement of
causality—that is, the observations must take place with
spacelike separations between the two detectors over the
whole observation periodT.

We calculate several types of EPR or entanglement mea-
sures. First we evaluate the 1989 inferred HUP EPR criterion
(4.2) but using the linear estimate form, which will allow
demonstration of both entanglement and EPR correlations
defined in the spirit of the original EPR paradox. In terms of
quadrature phase amplitude measurements this strong crite-
rion is satisfied when

Dinf,L
2 XoutDinf,L

2 Yout = D2sX1
out − cxX2

outdD2sY1
out − cyY2

outd , 1.

s4.10d

Now cx=kX1
out,X2

outl /D2X2
out and cy=kY1

out,Y2
outl /D2Y2

out will
minimize [11] the inference variances. Substituting forcx
andcy, we explicitly calculate

Dinf,L
2 Xout = D2X1

out − kX1
out,X2

outl2/D2X2
out s4.11d

and

Dinf,L
2 Yout = D2Y1

out − kY1
out,Y2

outl2/D2Y2
out. s4.12d

For our particular system moments we haveka1l=ka2l=0
and symmetry between thea1 anda2 modes, so that

D2X1
out =

1

2
sV + Vp/2d ù 1 s4.13d

and

kX1
out,X2

outl =
1

2
sV0 − Vp/2d. s4.14d

The linear inference EPR criterion(4.4) is then equivalent to

Dinf,L
2 Xout =

2V0Vp/2

V0 + Vp/2 , 1. s4.15d

This criterion is not equivalent to(4.2) which is based on
the conditionals, since the linear estimate may not be the
best, in which case it is possible that(4.2) is satisfied while
(4.10) is not, and we do not pick up EPR and entanglement
where it exists. Nevertheless the criterion(4.15) is sufficient
to prove EPR correlations and entanglement.

Second, we calculate the Duanet al. two-mode squeezing
criterion (4.7) for entanglement. Written in terms of quadra-
ture phase amplitude measurements, this becomes

Vp/2 =
1

4
fD2sX1

out − X2
outd + D2sY1

out + Y2
outdg , 1.

s4.16d

This criterion was explicitly shown to be both sufficient and
necessary for entanglement for the case of Gaussian states
(for appropriately chosen quadratures), meaning that in this
case it would pick up any entanglement present. Our system
is not Gaussian, and while these criteria are still sufficient to

imply entanglement, they may not be necessary.
It is always the case that for ideal squeezing both the

linear EPR and the squeezed entanglement criteria are satis-
fied. Where one has additional loss, however, it is possible
for the squeezed-entanglement criterion(4.16) to be satisfied
but not the EPR criterion(4.10). Such situations have been
studied by Bowenet al. [7]. Our situation is different again,
due to the fact that the underlying quantum states undergo
nonlinear fluctuations and are inherently non-Gaussian.

D. EPR correlations of two degenerate parametric oscillators

EPR correlations and entanglement can also be obtained
from the outputs of two degenerate parametric oscillators
[34]. This requires an additional interferometer, but it does
allow the use of type I frequency conversion, which may be
easier to obtain at some wavelengths. With this technique,

there are two squeezed outputsâ,b̂, which are then com-
bined at a beam splitter to obtain the EPR correlated modes.
The following choice of relative phases generates modes
â1,â2 similar to those analyzed above for EPR and entangle-
ment signatures:

â1 = sâ − ib̂d/Î2,

â2 = sâ + ib̂d/Î2. s4.17d

With this choice, we can immediately deduce the corre-
spondence between the input and output quadratures:

X̂1
out = sX̂a + Ŷbd/Î2,

Ŷ1
out = sŶa − X̂bd/Î2,

X̂2
out = sX̂a − Ŷbd/Î2,

Ŷ2
out = sŶa + X̂bd/Î2. s4.18d

Next, suppose the input fields are independently squeezed,

with reduced fluctuations in eachŶa,b quadrature. Calculat-
ing correlations between the outputs gives

VDG
p/2 =

1

4
fD2sX1

out − X2
outd + D2sY1

out + Y2
outdg

=
1

2
sD2Ya

out + D2Yb
outd , 1. s4.19d

This demonstrates that having two degenerate squeezed
inputs can also generate EPR correlations. We note, however,
that having two squeezed inputs will always require two
pump beams. Thus, in comparing the results with these two
methods, it is essential to use a comparison in which the total
input photon flux is identical. The equation that should be
used to compare with the input flux equation(2.13) is then
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IDG =
uEcu2

g0
= Ncg0, s4.20d

where in this caseIDG is the total input flux used to drive
both the degenerate down-conversion cavities, andg0 is the
pump mode decay rate.

The degenerate and nondegenerate routes to EPR correla-
tions and entanglement are equivalent only in the linearized
approximation. In the situation treated in this paper where
the fields and states have a non-Gaussian character, the two
methods are generally inequivalent, as we show later.

V. BELOW-THRESHOLD INTRACAVITY MOMENTS

In this section we use perturbation methods to study the
nondegenerate parametric oscillator beyond the linearized re-
gime both in the fully quantum mechanical approach using
positive P representation and in the semiclassical approach
based on the Wigner function. In the positiveP case the
basic quantities investigated are correlations involving the
internal complex quadrature operators[35], mapped into sto-
chastic variables according to

X0 = sa0 + a0
+d, Y0 =

1

i
sa0 − a0

+d,

X = sa1 + a2
+d, Y =

1

i
sa1 − a2

+d,

X+ = sa2 + a1
+d, Y+ =

1

i
sa2 − a1

+d. s5.1d

In the truncated Wigner(semiclassical) case, we have a
similar set withai

+ replaced byai
* . To avoid excessive nota-

tion we use the same symbols for the quadrature variables in
the two cases, noting that in the semiclassical caseX+=X*
andY+=Y*.

For developing a systematic perturbation procedure, it
proves convenient to define

gr = g0/g, m = E/Ec, g =
x

gÎ2gr

, s5.2d

and to introduce the following scaled quadrature variables:

x0 = gÎ2grX0,

y0 = gÎ2grY0,

x = gX,

y = gY,

x+ = gX+,

y+ = gY+. s5.3d

In terms of the physics involved, the expansion parameter
is proportional to the critical intracavity photon numberNc,
since

g2 = 1/s2grNcd.

This can also be written in terms of the input photon flux
requirement at threshold as

g2 =
g

4Ic
.

That is, a smallerg2 indicates a lower nonlinearity and hence
increasing input photon flux at threshold. We note here that
in comparing these results with the degenerate OPO case, a
higher total input flux is needed for the same value of the
degenerate coupling parametergDG

2 , if the standard defini-
tions [21] are adopted. This is simply due to the fact that one
must drive two degenerate cavities instead of one to get cor-
related outputs. Hence, for the purposes of comparing these
two methods of generating correlated fields, we will make
comparisonsat the same total input flux. This implies that,
for comparison purposes,

gDG
2 =

g

2Ic
= 2g2.

In terms of these new variables, and a scaled timet=gt,
the equations for the quadratures are given as follows.

Positive P equations

dx0 = − grfx0 − 2m + sxx+ − yy+dgdt,

dy0 = − grfy0 + sxy+ + yx+dgdt,

dx= F− x +
1

2
sxx0 + yy0dGdt +

g
Î2

fÎx0 + iy0dw1

+ Îx0 − iy0dw2
+g,

dy= F− y +
1

2
sxy0 − yx0dGdt − i

g
Î2

fÎx0 + iy0dw1

− Îx0 − iy0dw2
+g,

dx+ = F− x+ +
1

2
sx+x0 + y+y0dGdt +

g
Î2

fÎx0 + iy0dw2

+ Îx0 − iy0dw1
+g,

dy+ = F− y+ +
1

2
sx+y0 − y+x0dGdt − i

g
Î2

fÎx0 + iy0dw2

− Îx0 − iy0dw1
+g, s5.4d

wherekdw1dw2l=kdw1
+dw2

+l=dt.
Semiclassical equations

dx0 = − grfx0 − 2m + sxx+ − yy+dgdt + Î2ggrfdw0 + dw0
*g,

dy0 = − grfy0 + sxy+ + yx+dgdt − iÎ2ggrfdw0 − dw0
*g,

dx= F− x +
1

2
sxx0 + yy0dGdt + gfdw1 + dw2

*g,
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dy= F− y +
1

2
sxy0 − yx0dGdt − igfdw1 − dw2

*g,

dx+ = F− x+ +
1

2
sx+x0 + y+y0dGdt + gfdw2 + dw1

*g,

dy+ = F− y+ +
1

2
sx+y0 − y+x0dGdt − igfdw2 − dw1

*g,

s5.5d

wherekdwidwj
*l=di jdt.

In order to solve these coupled equations systematically,
we introduce a formal perturbation expansion in powers ofg:

xk = o
n=0

`

gnxk
snd,

yk = o
n=0

`

gnyk
snd. s5.6d

This expansion has the property that the zeroth order term
corresponds to the large classical field of order 1/g in the
unscaled quadratures, the first order term involves quantum
fluctuations of order 1, and the higher order terms corre-
spond to nonlinear corrections to the quantum fluctuations of
orderg and higher.

A. Matched power equations in the positiveP representation

Substituting Eq.(5.6) in Eq. (5.4) and equating like pow-
ers of g on both sides, we obtain a hierarchy of stochastic
equations. The set of equations thus obtained, if desired, can
be diagrammatically analyzed using the “stochastic diagram”
method[36]. The zeroth order equations are

dx0
s0d = − grfx0

s0d − 2m + sxs0dx+s0d − ys0dy+s0ddgdt,

dy0
s0d = − grfy0

s0d + sxs0dy+s0d + ys0dx+s0ddgdt,

dxs0d = F− xs0d +
1

2
sxs0dx0

s0d + ys0dy0
s0ddGdt,

dys0d = F− ys0d +
1

2
sxs0dy0

s0d − ys0dx0
s0ddGdt,

dx+s0d = F− x+s0d +
1

2
sx+s0dx0

s0d + y+s0dy0
s0ddGdt,

dy+s0d = F− y+s0d +
1

2
sx+s0dy0

s0d − y+s0dx0
s0ddGdt. s5.7d

These equations correspond to the classical nonlinear
equations for the intracavity quadratures expressed in terms
of dimensionless scaled fields. Below threshold, the steady-
state solution of these equations is well known and is given
by

x0
s0d = 2m,

y0
s0d = xs0d = ys0d = 0. s5.8d

The first order equations are

dx0
s1d = − grx0

s1ddt,

dy0
s1d = − gry0

s1ddt,

dxs1d = − s1 − mdxs1ddt + Î2mdwx1,

dys1d = − s1 + mdys1ddt − iÎ2mdwy1,

dx+s1d = − s1 − mdx+s1ddt + Î2mdwx2,

dy+s1d = − s1 + mdy+s1ddt − iÎ2mdwy2. s5.9d

We have introduced new Wiener increments as
dwx1sy1dstd=fdw1std±dw2

+stdg /Î2 and dwx2sy2dstd
=fdw2std±dw1

+stdg /Î2, with the following correlations:

kdwx1dwx2l = dt,

kdwy1dwy2l = dt. s5.10d

and all other correlations vanishing.
Equations(5.9) are the ones that are normally used to

predict squeezing. They are linear stochastic equations with
nonclassical Gaussian white noise and, if higher order cor-
rections are ignored, yield an ideal squeezed state for the
subharmonic quadratures together with an ideal coherent
state for the pump. Further, from the structure of these equa-
tions, it is evident that the steady-state solution for the pump
field quadratures, in this order, vanishes. We can, therefore,
without loss of generality, set all odd orders ofx0

snd ,y0
snd for

the pump, and all even orders ofxi
snd ,yi

snd, i =1,2, for the
signal and idler fields, respectively, equal to zero. With this
in mind, the second order equations turn out to be

dx0
s2d = − grfx0

s2d + xs1dx+s1d − ys1dy+s1dgdt,

dy0
s2d = − grfy0

s2d + xs1dy+s1d + ys1dx+s1dgdt. s5.11d

Since, in the present work, our primary interest is to cal-
culate the first nonlinear corrections to ideal squeezed-state
behavior, to be consistent, we need to include contributions
from the third order equations as well. These equations are as
given below:

dxs3d = F− s1 − mdxs3d +
1

2
sxs1dx0

s2d + ys1dy0
s2ddGdt

+
1

2Î2m
fx0

s2ddwx1 + iy0
s2ddwy1g,

dys3d = F− s1 + mdys3d +
1

2
sxs1dy0

s2d − x0
s2dys1ddGdt

+
1

2Î2m
fy0

s2ddwx1 − ix0
s2ddwy1g,
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dx+s3d = F− s1 − mdx+s3d +
1

2
sx+s1dx0

s2d + y+s1dy0
s2ddGdt

+
1

2Î2m
fx0

s2ddwx2 + iy0
s2ddwy2g,

dy+s3d = F− s1 + mdy+s3d +
1

2
sx+s1dy0

s2d − x0
s2dy+s1ddGdt

+
1

2Î2m
fy0

s2ddwx2 − ix0
s2ddwy2g. s5.12d

This set of equations has nontrivial noise terms as they de-
pend on the solutions of the stochastic equations at second
order.

B. Operator moments in the positiveP representation

The set of stochastic equations together with the Itô rules
for variable changes[28] permit computation of the operator
moments in a straightforward manner. Apart from their in-
trinsic interest, they are useful in checking the correctness of
somewhat more involved spectral calculations given later.
The results obtained are summarized below:

kx0
s2dl =

− 2m2

1 − m2 ,

kys1dy+s1dl = − S m

1 + m
D ,

kxs1dx+s1dl = S m

1 − m
D ,

kys1dy+s3dl =
m

4s1 + mds1 − m2d

3F mgr

gr + 2
+

grs2 − m + m2d + 4s1 + md
s1 + mdfgr + 2s1 + mdg G ,

kxs1dy+s1dy0
s2dl =

m2

1 − m2S gr

gr + 2
D . s5.13d

The first quantity above pertains to the depletion of the pump
that supplies energy for the subharmonic mode. The next two
quantities are the squeezed and enhanced quadratures as
given by the linearized theory, while the fourth one is the
first correction to the linearized theory. The last one is the
steady-state triple quadrature correlation. This quantity has
been investigated earlier for its relevance in distinguishing
quantum mechanics from a local hidden variable theory[37].

The results above yield the following expression for the
steady-state intracavity squeezed quadrature fluctuations:

kŶŶ†lss= 1 + k:ŶŶ†:l =
1

1 + m
+

g2m

2s1 + mds1 − m2dF mgr

gr + 2

+
grs2 − m + m2d + 4s1 + md

s1 + mdfgr + 2s1 + mdg G . s5.14d

Noting that gDG
2 =2g2 at the same total flux input, we can

now compare the degenerate and nondegenerate routes to
obtaining EPR correlations. By comparison, the degenerate
OPO yields quite different nonlinear corrections[21] near
threshold:

kŶDG
2 l =

1

1 + m
+

2g2m

2s1 + mds1 − m2dF mgr

gr + 2

+
grs1 − m + m2d + 2s1 + md

s1 + mdfgr + 2s1 + mdg G . s5.15d

For the same total photon flux input and damping ratiogr,
the nonlinear corrections are always larger for the degenerate
case, as compared to the nondegenerate case. In the limit of
gr →0, the nonlinear corrections are equivalent in the two
cases. Questions relating to optimal output entanglement and
squeezing will be treated in the next section, using
frequency-domain methods.

The triple moment correlation for the quadratures scales
with 1/ÎNc and increases with driving field, since it is given
by

kX̂Ŷ†Ŷ0l =
gm2

1 − m2S Îgr/2

gr + 2
D . s5.16d

C. Matched power equations in semiclassical theory

Using the same technique of matching the powers ofg,
we obtain the following set of equations in the semiclassical
theory. The zeroth order equation are

dx0
s0d = − grfx0

s0d − 2m + sxs0dx+s0d − ys0dy+s0ddgdt,

dy0
s0d = − grfy0

s0d + sxs0dy+s0d + ys0dx+s0ddgdt,

dxs0d = F− xs0d +
1

2
sxs0dx0

s0d + ys0dy0
s0ddGdt,

dys0d = F− ys0d +
1

2
sxs0dx0

s0d − ys0dx0
s0ddGdt,

dx+s0d = F− x+s0d +
1

2
sx+s0dx0

s0d + y+s0dy0
s0ddGdt,

dy+s0d = F− y+s0d +
1

2
sx+s0dy0

s0d − y+s0dx0
s0ddGdt. s5.17d

As in the positiveP case, the steady-state solution of
these equations is given by

x0
s0d = 2m,
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y0
s0d = xs0d = ys0d = 0. s5.18d

The first order equations aren

dx0
s1d = − grx0

s1ddt + 2grdwx0,

dy0
s1d = − gry0

s1ddt + 2grdwy0,

dxs1d = − s1 − mdxs1ddt + Î2dwx1,

dys1d = − s1 + mdys1ddt + Î2dwy1,

dx+s1d = − s1 − mdx+s1ddt + Î2dwx2,

dy+s1d = − s1 + mdy+s1ddt + Î2dwy2, s5.19d

where

kdwx0dwx0l = kdwy0dwy0l = kdwx1dwx2l = kdwy1dwy2l = dt,

s5.20d

with all other correlations vanishing.
The equations above give the linearized theory. The first

nonlinear corrections come from the next two sets of equa-
tions given below.

The second order equations are:

dx0
s2d = − grfx0

s2d + xs1dx+s1d − ys1dy+s1dgdt,

dy0
s2d = − grfy0

s2d + xs1dy+s1d + ys1dx+s1dgdt,

dxs2d = F− s1 − mdxs2d +
1

2
sxs1dx0

s1d + ys1dy0
s1ddGdt,

dys2d = F− s1 + mdys2d +
1

2
sxs1dy0

s1d − x0
s1dys1ddGdt,

dx+s2d = F− s1 − mdx+s2d +
1

2
sy+s1dy0

s1d + x+s1dx0
s1ddGdt,

dy+s2d = F− s1 + mdy+s2d +
1

2
sx+s1dy0

s1d − x0
s1dy+s1ddGdt.

s5.21d

The third order equations are

dx0
s3d = − grfx0

s3d + xs1dx+s2d + xs2dx+s1d − ys1dy+s2d − ys2dy+s1dgdt,

dy0
s3d = − grfy0

s3d + xs1dy+s2d + xs2dy+s1d + ys1dx+s2d + ys2dx+s1dgdt,

dxs3d = F− s1 − mdxs3d +
1

2
sxs1dx0

s2d + xs2dx0
s1d + ys1dy0

s2d

+ ys2dy0
s1ddGdt,

dys3d = F− s1 + mdys3d +
1

2
sxs1dy0

s2d + xs2dy0
s1d − ys1dx0

s2d

− ys2dx0
s1ddGdt,

dx+s3d = F− s1 − mdx+s3d +
1

2
sx+s1dx0

s2d + x+s2dx0
s1d + y+s1dy0

s2d

+ y+s2dy0
s1ddGdt,

dy+s3d = F− s1 + mdy+s3d +
1

2
sx+s1dy0

s2d + x+s2dy0
s1d − y+s1dx0

s2d

− y+s2dx0
s1ddGdt. s5.22d

D. Operator moments in semiclassical theory

In this case, the analogs of the results in Eq.(5.13) are
found to be

kx0
s2dl =

− 2m2

1 − m2 ,

kxs1dx+s1dl = S 1

1 − m
D ,

kys1dy+s1dl = S 1

1 + m
D ,

kys2dy+s2dl =
1

2s1 − mds1 + mdS gr

gr + 2
D

+
1

2s1 + md2S gr

gr + 2s1 + mdD ,

kys1dy+s3dl = −
m

4s1 − mds1 + md2S gr

gr + 2
D +

m

2s1 − mds1 + md3

+
m

4s1 + md3F gr

gr + 2s1 + mdG ,

kxs1dy+s1dy0
s2dl + kxs2dy+s1dy0

s1dl + kxs1dy+s2dy0
s1dl

=
1

1 − m2S gr

gr + 2
D . s5.23d

The main difference in these calculation, compared with
the positiveP results, appears in the nonlinear correction for
the subharmonic squeezed quadrature. Up to second order in
g we have

DECHOUM et al. PHYSICAL REVIEW A 70, 053807(2004)

053807-12



kŶŶ+l =
1

g2fg2kys1dy+s1dl + g4kys2dy+s2dl + 2g4kys1dy+s3dlg

=
1

1 + m
+

g2

2s1 + mds1 − m2dF gr

gr + 2

+
grs1 + 3m − 2m2d + 4ms1 + md

s1 + mdfgr + 2s1 + mdg G . s5.24d

The similarities and disagreement between this result and
the positiveP expression for the same quantity deserve fur-
ther comments, given in the concluding section. In particular,
we note that, while the linear terms agree, the nonlinear
terms are not in agreement below threshold. However, just
below threshold the two theories give essentially identical
nonlinear corrections. There is good agreement also in the
limit gr →0.

In the case of the triple moments, the discrepancy appears
to leading order, since the truncated Wigner theory predicts
that

kX̂Ŷ†Ŷ0l =
g

1 − m2S Îgr/2

gr + 2
D . s5.25d

Here the semiclassical prediction is for a moment that is
independent of input power asm→0, which is physically
unacceptable(since one expects a vacuum state in this limit),
and inconsistent with the full quantum result of the positive
P theory, in Eq.(5.16).

Comparisons of the positiveP and truncated Wigner
squeezing moments are shown in Fig. 2.

VI. POSITIVE P SPECTRAL CORRELATIONS

Next, we proceed to analyze spectral correlations which
are of direct relevance to comparison with experiments. In
particular, we compute the nonlinear corrections to the

squeezing spectrum using the positiveP stochastic variables.

A. Fourier transforms

To perform calculations in the frequency domain, it
proves convenient to deal directly with the Fourier trans-
forms

x̃sVd =E dt

Î2p
eiVtxstd

of the hierarchy of the stochastic equations obtained earlier.
The equations thus obtained contain noise terms

jx,ysVd =E dt

Î2p
eiVtjx,ystd

with the following correlations:

kjasVdl = 0,

kja1sVdjb2sV8dl = dabdsV + V8d. s6.1d

In this context, for notational compactness it is useful to
introduce the standard notation for convolution of two func-
tions:

fA p BgsVd =E dV8
Î2p

AsV8dBsV − V8d.

With this in mind, the stochastic equations obtained earlier
may be rewritten in the frequency domain as follows.

First order

x̃s1dsVd =
Î2mjx1sVd

s− iV + 1 −md
,

ỹs1dsVd = −
iÎ2mjy1sVd

s− iV + 1 +md
,

x̃+s1dsVd =
Î2mjx2sVd

s− iV + 1 −md
,

ỹ+s1dsVd = −
iÎ2mjy2sVd

s− iV + 1 +md
. s6.2d

Second order

x̃0
s2dsVd = −

grfx̃s1d p x̃+s1d − ỹs1d p ỹ+s1dgsVd
s− iV + grd

,

ỹ0
s2dsVd = −

grfx̃s1d p ỹ+s1d + x̃+s1d p ỹs1dgsVd
s− iV + grd

. s6.3d

Third order

FIG. 2. Graph of second order nonlinear correction to the

squeezing/entanglement momentkŶ1
2lNL vs driving field m, using

parameters ofg2=0.001 andgr =0.1, 1, 10. Upper lines have larger
gr values. Solid lines are the positiveP results, which vanish at
small driving field. Dotted lines are the(less accurate) semiclassical
results, which do not vanish at small driving field.
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x̃s3dsVd =
fx̃0

s2d p sx̃s1d + jx1/Î2md + ỹ0
s2d p sỹs1d + ijy1/Î2mdgsVd

2s− iV + 1 −md
,

ỹs3dsVd =
fỹ0

s2d p sx̃s1d + jx1/Î2md − x̃0
s2d p sỹs1d + ijy1/Î2mdgsVd

2s− iV + 1 +md
,

x̃+s3dsVd =
fx̃0

s2d p sx̃+s1d + jx2/Î2md + ỹ0
s2d p sỹ+s1d + ijy2/Î2mdgsVd

2s− iV + 1 −md
,

ỹ+s3dsVd =
fỹ0

s2d p sx̃+s1d + jx2/Î2md − x̃0
s2d p sỹ+s1d + ijy2/Î2mdgsVd

2s− iV + 1 +md
. s6.4d

B. Output correlation spectrum

The output spectral features are obtained by calculating
internal spectra, then transforming to the external correlation
spectra.

1. Internal spectrum

We first calculate the internal spectrum of the squeezed
field, which is given bykỹsV1dỹ+sV2dl:

kỹsV1dỹ+sV2dl = g2kỹs1dsV1dỹ+s1dsV2dl + g4fkỹs1dsV1dỹ+s3d

3sV2dl + kỹs3dsV1dỹ+s1dsV2dlg + ¯ . s6.5d

The lowest order contribution is the usual result of the lin-
earized theory and is given by

kỹs1dsV1dỹ+s1dsV2dl = −
2mdsV1 + V2d
fV1

2 + s1 + md2g
. s6.6d

In terms of the squeezing variance, this means that

Vs1dp/2sVd = 1 −
4m

V2 + s1 + md2 . s6.7d

For comparison, note that the complementary(unsqueezed)
spectrum to this order is

kx̃s1dsV1dx̃+s1dsV2dl =
2mdsV1 + V2d
fV1

2 + s1 − md2g
. s6.8d

Taking the next order corrections into account, we find that
the normally ordered internal spectral correlations of the
squeezed quadrature are given by

k:ŶsV1dŶ†sV2d:l = H − 2m

V2 + s1 + md2 +
2g2m2gr

fV2 + s1 + md2g2

3 F sV2 + 1 −m2d
mgrs1 − m2d

+
s1 − m + grds1 + md − V2

s1 − mdfV2 + s1 − m + grd2g

−
s1 + m + grds1 + md − V2

s1 + mdfV2 + s1 + m + grd2gG

+ Osg4dJdsV1 + V2d. s6.9d

The correctness of the above expression can be checked by
verifying the following equality:

kys1dstdy+s3dstdlss=E dV1

Î2p
E dV2

Î2p
eisV1+V2dt

3kỹs1dsV1dỹ+s3dsV2dl. s6.10d

2. Entanglement and external spectrum

The corresponding external squeezing spectrum is then

Vp/2sVd = 1 −
4m

V2 + s1 + md2 +
4g2m2gr

fV2 + s1 + md2g2

3 F sV2 + 1 −m2d
mgrs1 − m2d

+
s1 − m + grds1 + md − V2

s1 − mdfV2 + s1 − m + grd2g

−
s1 + m + grds1 + md − V2

s1 + mdfV2 + s1 + m + grd2gG + Osg4d. s6.11d

This equation gives the complete squeezing spectrum, in-
cluding all nonlinear corrections to orderg2 or 1/Nc. The
linear part gives perfect squeezing form=1 and V=0, as
expected from the linear theory.

Once again, we can compare these results with those for
the degenerate route to obtaining EPR correlations, at the
same total input flux. The external squeezing spectrum is
then

VDG
p/2sVd = 1 −

4m

V2 + s1 + md2 +
8g2m2gr

fV2 + s1 + md2g2

3 F sV2 + 1 −m2d
2mgrs1 − m2d

+
s1 − m + grds1 + md − V2

s1 − mdfV2 + s1 − m + grd2g

−
s1 + m + grds1 + md − V2

s1 + mdfV2 + s1 + m + grd2gG . s6.12d

The nonlinear terms give corrections to perfect squeezing
below threshold. Just as was found for the total squeezing
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moments, the nonlinear spectral corrections at the same total
input flux are always smaller using a nondegenerate OPO as
opposed to using a pair of degenerate OPO’s.

At zero frequency, we find that

Vp/2s0d = 1 −
4m

s1 + md2 +
4g2m

s1 + md4

3F1 +
2m2grs2 + grd

s1 − mdfs1 + grd2 − m2gG . s6.13d

The resulting behavior for the optimum entanglement,
which is found at zero frequency(ignoring complications
from technical noise), is shown in Fig. 3. We see that, as
expected, the entanglement is not optimized at the critical
point, since the nonlinear critical fluctuations spoil this be-
fore an ideal entangled two-mode squeezed state withVp/2

=0 is achieved. Better entanglement is obtained whengr is
reduced, as this minimizes the “information leakage” in the
losses of the pump mode. In this limit, the only losses are
through the signal and idler output ports, which are needed in
order to have extracavity measurements.

This expression does not describe the spectrum very close
to the critical point, as it diverges at the threshold. This re-
gion requires a different kind of scaling and is discussed
later.

3. Unsqueezed spectrum

The complementary or unsqueezed spectrum contains
critical fluctuations which grow extremely large near thresh-
old. For measurements of the maximum quadrature fluctua-
tions, this is given by

V0sVd = 1 +
4m

V2 + s1 − md2 −
4g2m2gr

fV2 + s1 − md2g2

3 F sV2 + 1 −m2d
mgrs1 − m2d

+
s1 − m + grds1 − md − V2

s1 − mdfV2 + s1 − m + grd2g

−
s1 + m + grds1 − md − V2

s1 + mdfV2 + s1 + m + grd2gG . s6.14d

The resulting behavior for the zero-frequency critical
fluctuations is shown in Fig. 4. Near the critical point, higher
order terms are likely to become significant. The effects of
these are treated in the next section.

4. Heisenberg uncertainty principle

We note here that in the linearized analysis the product of
these spectra corresponds to the Heisenberg uncertainty prin-
ciple:

V0sVdVp/2sVd = F1 −
4m

V2 + s1 + md2GF1 +
4m

V2 + s1 − md2G
= 1. s6.15d

Near threshold where nonlinear effects are dominant, this
relationship no longer holds. The zero-frequency nonlinear
uncertainty product is shown in Fig. 5. Just below the critical
point, the nonlinear corrections apparently predict an uncer-
tainty product less than unity, which clearly implies that the
second order perturbation method breaks down here. An un-
expected feature of these results is that forgr !1 the uncer-

FIG. 3. Optimum squeezing withg2=0.001, gr =10−3, 10−2,
10−1, 1, 10. Higher lines have larger values ofgr. Here,Vp/2,1
indicates squeezing and entanglement occurring at zero frequency.

FIG. 4. Complementary(unsqueezed) spectrum withg2=0.001,
gr =10−3, 10−2, 10−1, 1, 10. Lower lines have larger values ofgr.

FIG. 5. Heisenberg uncertainty product withg2=0.001, gr

=10−3, 10−2, 10−1, 1, 10. Higher lines have larger values ofgr.
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tainty product remains close to unity for all driving fields,
indicating that there is a near-minimum uncertainty state for
low frequency spectral measurements in the output fields.
This does not mean that there is a minimum uncertainty state
for the internal quadrature moments, since these are effec-
tively integrated over all frequencies, and involve different
quantum fields.

5. EPR paradox

We also investigate the behavior of theinferred Heisen-
berg uncertainty product, which demonstrates that there is an
EPR paradox. In the original proposal, this uncertainty prod-
uct would be zero, as the original EPR paradox involved
perfect correlations. Instead, the minimum value of this
product is determined by the nonlinear critical fluctuations.
Due to symmetry, we need plot only the behavior ofDinf,L

2 X0

in Fig. 6, using Eq.(4.15) for the inferred variance in terms
of the squeezed and unsqueezed spectral variances given by
Eqs.(6.11) and (6.14).

This shows qualitatively similar behavior to the entangle-
ment measure based on squeezing, and in fact for strong
entanglement the inferred uncertainty and squeezing mea-
sures are simply related by

Dinf,L
2 X0 = 2Vp/2. s6.16d

We see that near threshold the EPR measure and squeez-
ing entanglement measure both show the existence of a
strongly entangled output beam, as one might expect. The
perturbation theory breaks down past the point where opti-
mum entanglement is achieved, just below threshold, as we
will show from direct numerical simulations.

C. Triple spectral correlations

Triple spectral correlations give quantum effects which
distinguish very strongly[37] between the full quantum
theory and the semiclassical approximation.

Here, we calculate the internal quadrature triple spectral
correlationkx̃sV1dỹ+sV2dỹ0sV3dl. To the lowest nonvanishing
order this is given by

kx̃sV1dỹ+sV2dỹ0sV3dl = g4kx̃s1dsV1dỹ+s1dsV2dỹ0
s2dsV3dl.

s6.17d

Substituting forỹ0
s2d, we have

kx̃s1dsV1dỹ+s1dsV2dỹ0
s2dsV3dl = −

grkx̃s1dsV1dỹ+s1dsV2dfx̃s1d p ỹ+s1d + x̃+s1d p ỹs1dgsV3dl
s− iV3 + grd

, s6.18d

and using the Gaussian nature of the stochastic variables in-
volved to factorize the fourth order correlations we obtain

kX̂sV1dŶ†sV2dŶ0sV3dl

=
2gm2Îgrsgr + iV3ddsV1 + V2 + V3d

ÎpfV3
2 + gr

2gfV1
2 + s1 − md2gfV2

2 + s1 + md2g
.

s6.19d

To check this result, we can evaluate the steady-state
triple moment by integrating over all frequencies, and find
that we obtain the same result as given earlier by direct cal-
culations in Eq.(5.16). This result will be compared later
with the corresponding result obtained in the semiclassical
theory.

D. Comparisons with simulations

In order to verify the accuracy of these analytic calcula-
tions, we performed extensive numerical simulations of the
full nonlinear stochastic simulations, using a differencing
technique as in earlier studies. We calculate only the nonlin-
ear squeezing variance, defined as

VsVd = Vp/2sVd − Vs1dp/2sVd. s6.20d

This allows us to focus on the nonlinear corrections, which
are relatively small except very near the critical threshold at
m=1. The numerical method has the advantage that, unlike
perturbation theory, it is valid at all driving fields—even at
the critical point.

The integration parameters used were step sizedt
=0.001, with a time window oftmax=10 000. The number of
stochastic trajectories used for averaging was 2000, resulting
in typical relative sampling errors of around ±2%, as can be

FIG. 6. Inferred quadrature uncertainty withg2=0.001, gr

=10−3, 10−2, 10−1, 1, 10. Higher lines have larger values ofgr.
WhenDinf,L

2 X0,1, one may infer an EPR paradox.
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seen from the background sampling noise in some of the
resulting spectra.

Typical results are shown in Figs. 7 and 8 below, for
driving fields of m=0.5,0.9. Note that these graphs include
only the nonlinear corrections. Excellent agreement is found
with the analytically predicted results for these values of the
driving field.

Figure 9 shows results slightly closer to threshold, atm
=0.93, which is the optimum driving field for the parameters
chosen.

At this point, a maximum error in the analytic result of
around 10−4 is found, due to the neglect of higher order
nonlinear corrections. This indicates that the analytic pertur-
bation theory is able to correctly predict nonlinear effects up
to the optimum squeezing point, but starts to diverge beyond
this point. The numerical results, however, are stable
throughout the critical region. To obtain analytic predictions

in the critical region, we turn to a different asymptotic ex-
pansion in a later section.

VII. SEMICLASSICAL SPECTRAL CORRELATIONS

In this section we calculate approximate nonlinear results
using a semiclassical approach. These are less reliable, espe-
cially well below threshold, but have an intuitive “classical”
interpretation in terms of the incoming vacuum fluctuations.

A. Wigner representation

In the semiclassical theory, the hierarchy of the stochastic
equations given earlier can be written, in the frequency do-
main, as follows.

First order

x̃0
s1dsVd =

2grjx0sVd
s− iV + grd

,

ỹ0
s1dsVd =

2grjy0sVd
s− iV + grd

,

x̃s1dsVd =
Î2jx1sVd

s− iV + 1 −md
,

ỹs1dsVd =
Î2jy1sVd

s− iV + 1 +md
,

x̃†s1dsVd =
Î2jx2sVd

s− iV + 1 −md
,

ỹ†s1dsVd =
Î2jy2sVd

s− iV + 1 +md
. s7.1d

FIG. 7. Nonlinear squeezing spectrum withg2=0.005, gr =1,
andm=0.5. The dashed line represents the analytical result and the
noisy line the stochastic simulation.

FIG. 8. Nonlinear squeezing spectrum withg2=0.001,gr =0.5,
andm=0.9. The dashed line represents the analytical result and the
noisy line the stochastic simulation.

FIG. 9. Nonlinear squeezing spectrum withg2=0.001, gr

=0.01, andm=0.93. The dashed line represents the analytical result
and the noisy line the stochastic simulation. This is the driving field
for optimum entanglement at zero frequency.
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Second order

x̃0
s2dsVd = −

grfx̃s1d p x̃†s1d − ỹs1d p ỹ+s1dgsVd
s− iV + grd

,

ỹ0
s2dsVd = −

grfx̃s1d p ỹ+s1d + x̃†s1d p ỹs1dgsVd
s− iV + grd

,

x̃s2dsVd =
fx̃s1d p x̃0

s1d + ỹs1d p ỹ0
s1dgsVd

2s− iV + 1 −md
,

ỹs2dsVd =
fx̃s1d p ỹ0

s1d − ỹs1d p x̃0
s1dgsVd

2s− iV + 1 +md
,

x̃+s2dsVd =
fx̃†s1d p x̃0

s1d + ỹ+s1d p ỹ0
s1dgsVd

2s− iV + 1 −md
,

ỹ+s2dsVd =
fx̃+s1d p ỹ0

s1d − ỹ+s1d p x̃0
s1dgsVd

2s− iV + 1 +md
. s7.2d

Third order (signal and idler fields)

x̃s3dsVd =
fx̃s1d p x̃0

s2d + x̃s2d p x0
s1d + ỹs1d p ỹ0

s2d + ỹs2d p ỹ0
s1dgsVd

2f− iV + 1 −mg
,

ỹs3dsVd =
fx̃s1d p ỹ0

s2d + x̃s2d p ỹ0
s1d − ỹs2d p x̃0

s1d − ỹs1d p x̃0
s2dgsVd

2f− iV + 1 +mg
,

x̃+s3dsVd =
fx̃+s1d p x̃0

s2d + x̃+s2d p x̃0
s1d + ỹ+s1d p ỹ0

s2d + ỹ+s2d p y0
s1dgsVd

2f− iV + 1 −mg
,

ỹ+s3dsVd =
fx̃+s1d p ỹ0

s2d + x̃+s2d p ỹ0
s1d − ỹ+s2d p x̃0

s1d − ỹ+s1d p x̃0
s2dgsVd

2f− iV + 1 +mg
. s7.3d

B. Squeezing correlation spectrum

The spectrum of the squeezed quadrature, for instance, is
given by

kỹsV1dỹ+sV2dl = g2kỹs1dsV1dỹ+s1dsV2dl

+ g4hkỹs2dsV1dỹ+s2dsV2dl

+ kỹs1dsV1dỹ+s3dsV2dl + kỹs3dsV1dỹ+s1dsV2dlj

+ . . . . s7.4d

The lowest order contribution turns out to be

kỹs1dsV1dỹ+s1dsV2dl =
2dsV1 + V2d
V1

2 + s1 + md2 . s7.5d

Similarly, for the amplified quadrature, to the lowest order
we have

kx̃s1dsV1dx̃+s1dsV2dl =
2dsV1 + V2d
V1

2 + s1 − md2 . s7.6d

For the pump quadratures, there is no squeezing, to the low-
est order:

kx̃0
s1dsV1dx̃0

s1dsV2dl = kỹ0
s1dsV1dỹ0

s1dsV2dl =
4gr

2dsV1 + V2d
V1

2 + gr
2 .

s7.7d

The next contributions to the squeezed quadrature are

kỹs2dsV1dỹ+s2dsV2dl

=
grdsV1 + V2d
V1

2 + s1 + md2H 1 − m + gr

s1 − mdfV1
2 + s1 − m + grd2g

+
1 + m + gr

s1 + mdfV1
2 + s1 + m + grd2gJ s7.8d

and

kỹs1dsV1dỹ+s3dsV2dl + kỹs3dsV1dỹ+s1dsV2dl

=
2mgrdsV1 + V2d
fV1

2 + s1 + md2g2 3 H−
s1 + mds1 − m + grd − V1

2

s1 − mdfV1
2 + s1 − m + grd2g

+
s1 + mds1 + m + grd − V1

2

s1 + mdfV1
2 + s1 + m + grd2g

+
2s1 + md

grs1 − m2dJ , s7.9d

which yield, for the internal spectral correlations,
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kỸsV1dỸ+sV2dl = H 2

V2 + s1 + md2 +
g2gr

fV2 + s1 + md2g2F4ms1 + md
grs1 − m2d

+
s1 − m + grdV2 + fs1 + md2 + 2ms1 + mdgs1 + m + grd

s1 + mdfV2 + s1 + m + grd2g

+
s1 + m + grdV2 + s1 − m2ds1 − m + grd

s1 − mdfV2 + s1 − m + grd2g G + Osg4dJdsV1 + V2d. s7.10d

This, in turn, gives the following expression for the external squeezing spectrum, obtained by including both internal fields
and the correlated reflected vacuum noise:

Vp/2sVd = 1 −
4m

V2 + s1 + md2 +
2g2gr

fV2 + s1 + md2g2F2ms1 + V2 − m2d
grs1 − m2d

+
fs1 − mds1 − m + grd − 2m2gV2 + s1 − m + grds1 + m + m2 + m3d

s1 − mdfV2 + s1 − m + grd2g

+
fs1 + mds1 + m + grd + 2m2gV2 + s1 + m + grds1 + 3m + m2 − m3d

s1 + mdfV2 + s1 + m + grd2g G + Osg4d. s7.11d

It is interesting to note that this spectrum is quite different
from that given by the positiveP representation whenm
→0. However, near the threshold, that is, in the limitm
→1, the two results show close agreement. As observed pre-
viously in [21], the physical difficulty with the truncated
Wigner method is that it is essentially identical with stochas-
tic electrodynamics. This means that even with no input there
are changes to the output spectrum caused by the effect of
nonlinearities on the vacuum fluctuations, which behave as
real classical fields. Just as in the degenerate case, this de-
pends on the damping ratiogr =g0/g. For gr →0, the pump
mode has negligible vacuum fluctuation inputs, sinceg0<0,
so that the truncated Wigner method is more reliable in this
limit. Similarly, the approximations used in this method can
give nearly correct results at threshold, since here all photon
numbers are relatively large.

C. Triple spectral correlation

For the triple spectral correlation function in the truncated
Wigner method,

kx̃sV1dỹ+sV2dỹ0sV3dl = g3kx̃s1dsV1dỹ+s1dsV2dỹ0
s1dsV3dl

+ g4hkx̃s1dsV1dỹ+s1dsV2dỹ0
s2dsV3dl

+ kx̃s2dsV1dỹ+s1dsV2dỹ0
s1dsV3dl

+ kx̃s1dsV1dỹ+s2dsV2dỹ0
s1dsV3dlj

s7.12d

The term proportional tog3 vanishes, and as a result the
lowest nontrivial order is found to be

kX̂sV1dŶ†sV2dŶ0sV3dl

=
2gÎgrsgr − iV3s1 + grdddsV1 + V2 + V3d

ÎpfV3
2 + gr

2gfV1
2 + s1 − md2gfV2

2 + s1 + md2g
.

s7.13d

This can be compared with the full quantum triple corre-
lations in Eq.(6.19). The essential difference between the

quantum and semiclassical theories is that the former gives a
zero spectrum in the absence of a driving field while the
latter, due to the “real” character of the semiclassical vacuum
field, gives a nonzero spectrum. At threshold, the integrated
moments in the two methods agree, but even near threshold
there are large spectral discrepancies at finite frequencies of
V3.gr /2, which should be relatively simple to detect due to
the large size of the critical fluctuations. This provides a clear
distinction between the predictions of a full quantum theory
and the truncated Wigner theory(which is equivalent to a
semiclassical or hidden variable approach).

VIII. CRITICAL PERTURBATION THEORY

As we have seen, the perturbative corrections diverge at
the critical pointsm=1d and a different approach is called for
to investigate the neighborhood of the threshold. To this end
we define new scaled quadratures variables, and use a differ-
ent expansion[38] valid around the critical region. The new
pump mode variablex0 corresponds to the real scaled deple-
tion in the pump mode amplitude, relative to the undepleted
value at the critical point. The signal-idler quadrature vari-
ablesx,x+ now describe the critical fluctuations scaled to be
of order 1 at the threshold.

A. Positive P representation

We scale the quadratures as

x0 =
1

g
FxX0

g
− 2G, y0 =Î2gr

g
Y0,

x = ÎgX, y = Y,

x+ = ÎgX+, y+ = Y+, s8.1d

and define also a new scaled time and driving field

h =
2

g
S E

Ec
− 1D ,

CRITICAL FLUCTUATIONS AND ENTANGLEMENT IN… PHYSICAL REVIEW A 70, 053807(2004)

053807-19



t = ggt. s8.2d

In terms of these variables, the positiveP equations become

gdx0 = − grfx0 − 2h + xx+ − gyy+gdt,

gdy0 = − grfy0 + xy+ + yx+gdt,

dx=
1

2
sx0x + gy0yddt + dwx1std,

gdy= F− 2y +
g

2
sxy0 − yx0dGdt + dwy1std,

dx+ =
1

2
sx0x

+ + gy0y
+ddt + dwx2std,

gdy+ = F− 2y+ +
g

2
sx+y0 − y+x0dGdt + dwy2std. s8.3d

The Gaussian white noise sources in these equations are no
longer uncorrelated and have the following properties:

kdwx1dwx2l = 2S1 +
g

2
x0Ddt,

kdwy1dwy2l = − 2gS1 +
g

2
x0Ddt,

kdwx1dwy2l = kdwx2dwy1l = g2y0dt. s8.4d

We now develop a perturbation theory valid at threshold by
expanding in powers ofg, as in Eq.(5.6). The first set of
equations is obtained by neglecting all terms of orderg or
greater on the right sides of the two sets of equations given
above:

gdx0
s0d = − grfx0

s0d − 2h + xs0dx+s0dgdt,

gdy0
s0d = − grfy0

s0d + xs0dy+s0d + ys0dx+s0dgdt,

dxs0d =
1

2
fxs0dx0

s0dgdt + dwx1
s0d,

gdys0d = − 2ys0ddt + dwy1
s0d,

dx+s0d =
1

2
fx+s0dx0

s0dgdt + dwx2
s0d,

gdy+s0d = − 2y+s0ddt + dwy2
s0d. s8.5d

A significant feature of these equations is that the quadra-
turesys0d and y+s0d can be worked out without reference to
any of other variables, and they give zero noise in the exter-
nal quadrature at zero frequency. Coupling between variables
appears in high order expansions and generates the critical
fluctuations in the squeezed quadrature.

We now consider what happens at or near the classical
thresholdh=0. In a model where the subharmonic genera-

tion does not cause the pump mode to deplete, we would
havex0

s0d=2h, and at threshold the critical fluctuations inx
and x+ would diffuse outward without any bound. When
depletion is included, the critical fluctuations in these
quadratures are finite, but very slowly varying compared to
those in the other variables. The pump field can therefore be
adiabatically eliminated to first order in the expansion.

Near thresholdsgh!1d the decay term in the unsqueezed
quadraturex andx+ is roughly −x0, which is of order 1. The
pump mode will be depleted, sox0 must be negative in order
for this to be stable. The scaled pump field decay isgr /g, and
the squeezed quadrature decay is of order 1/g. If gr is much
larger thang, it is possible to adiabatically eliminate both the
pump amplitude and the squeezed quadrature in the equa-
tions for the large critical fluctuationsx andx+. Since we are
taking the limit of smallg, we shall assume that this is pos-
sible to zeroth order in the asymptotic expansion. In the adia-
batic elimination, we must solve for the steady-state values
of the pumpx0, given an instantaneous first order critical
fluctuationx andx+. To leading(zeroth) order this gives

x0
s0d = 2h − xs0dx+s0d. s8.6d

Substituting in the equations forx andx+, we find that

dxs0d = Fhxs0d −
1

2
sxs0dd2x+s0dGdt + dwx1

s0d,

dx+s0d = Fhx+s0d −
1

2
sx+s0dd2xs0dGdt + dwx2

s0d. s8.7d

After the change of variables

x+ =
xs0d + x+s0d

2
x− = i

xs0d − x+s0d

2
. s8.8d

Equation(8.7) can be put in the form

ẋ = − hx −
1

2
xsx ·xd + jstd, s8.9d

wherex is a two-component vector whose elements arex+
andx−.

It is possible to write the Fokker-Planck equation for the
probability densityPsx+,x−,td, and look for the equilibrium
distribution of the formPsxd=N expf−Usxdg, whereUsxd is
a potential function given by

Usxd = hx ·x +
1

4
sx ·xd2. s8.10d

The variance of the critical fluctuations at the critical point
h=0 is given by

kX̂X̂†l =
2

gÎp
=

1.128. . .

g
. s8.11d

By comparison, the corresponding intracavity critical
fluctuation variance in a degenerate OPO at a comparable
input flux [21,38] is

kX̂DG
2 l =

2Î2Gs3/4d
gGs1/4d

=
0.956. . .

g
. s8.12d
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B. Critical squeezing in positiveP representation

We can now find the steady-state variance of the squeezed
quadrature at threshold. Because the fluctuations in the
squeezed quadrature are very small, we must work to higher
order in the asymptotic expansion to obtain a nontrivial re-
sult. To achieve this, it is most useful to introduce equations
in the higher order momentsyy+ andz=x+y+xy+. The corre-
sponding stochastic equations are derived using Itô rules for
the variable changes, so that

gdsyy+d = − 2F1 + 2yy+ +
g

2
Sx0 + x0yy+ −

1

2
y0zDGdt + ydwy2

+ y+dwy1,

gdz= F− 2z+
g

2
y0s2xx+ + 2gyy+ + 4gdGdt + xdwy2 + x+dwy1

+ gydwx2 + gy+dwx1. s8.13d

Taking the expectation value at the steady statekdsyy+dl
=0, we get the first order correction

kyy+ls1d = −
g

4
Ks1 + yy+dx0 −

1

2
y0zLs0d

. s8.14d

The first term in the above expression gives the result

ks1 + yy+dx0ls0d =
1

2
kx0ls0d = h −

1

2
kxs0dx+s0dl. s8.15d

For the second term we must write the correlation from the
following equation:

gdsy0zd = − fs2 + grdy0z+ grz
2gdt + 0sgd + snoised,

s8.16d

and then we get

ky0zls0d = −
gr

2 + gr
kz2ls0d = −

gr

2 + gr
ksx+y + xy+d2ls0d

=
gr

2 + gr
kxs0dx+s0dl. s8.17d

Finally we obtain, to first order,

kŶŶ†l =
1

2
−

g

4
Sh −

1

2
kxs0dx+s0dlD +

g

8
S gr

2 + gr
Dkxs0dx+s0dl

=
1

2
−

gh

4
+

g2

8
S2 + 2gr

2 + gr
DkX̂X̂†l. s8.18d

Noting thatkX̂X̂†l is given by Eq.(8.11), this result shows
that the best squeezing, in theoverall moment, for the intra-
cavity combined mode quadrature occurs just above thresh-
old where the last two terms nearly cancel. In the degenerate
OPO [21] the corresponding moment is given by

kŶDG
2 l =

1

2
−

gh

2Î2
+

g2

8Î2
S2 + 3gr

2 + gr
DkX̂DG

2 l. s8.19d

It should be recalled here that in this case the value of
kXDG

2 l is given by Eq.(8.12). We can interpret this result

physically by recalling that as one passes the critical point
the nondegenerate parametric amplifier develops a com-
pletely different type of squeezing[12] from the below-
threshold case. Instead of quadrature squeezing, there is a
phase-number squeezing which develops above threshold.
This involves correlations which may be thought of as occu-
pying a curved region in the conventionalX,Y phase space.
Thus, the below-threshold correlations are destroyed by
phase curvature as well as by the obvious saturation effects
that are found in the degenerate case.

C. Wigner representation

As in the positiveP equations, we define new scaled
quadrature variables to avoid divergences at the critical
point:

x0 =
1

g
FxX0

g
− 2G, g0 = Î2grY0,

x = ÎgX, y = Y,

x+ = ÎgX+, y+ = Y+. s8.20d

In these new variables, the stochastic equations in the
Wigner representation are

gdx0 = − grfx0 − 2h + xx+ − gyy+gdt + dwx0std,

gdy0 = − grfg0 + Îgsxy+ + yx+dgdt + dwy0std,

dx=
1

2
sx0x + Îgy0yddt + dwx1std,

gdy= F− 2y +
1

2
sÎgxy0 − gyx0dGdt + dwy1std,

dx+ =
1

2
sx0x

+ + Îgy0y
+ddt + dwx2std,

gdy+ = F− 2y+ +
1

2
sÎgx+g0 − gy+x0dGdt + dwy2std.

s8.21d

Here we use the same notation for scaled time and driving
field as in the positiveP case. The noise correlations are
given by

kdwx0dwy0l = 4gr
2gdt,

kdwx1dwx2l = 2dt,

kdwy1dwy2l = 2gdt. s8.22d

To develop a perturbation scheme, we define the zero-
order approximation to be the one in which terms of order
and greater thanÎg are neglected in the set of equations
above:
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gdx0
s0d = − grfx0

s0d − 2h + xs0dx+s0dgdt + dwx0
s0d,

gdy0
s0d = − grfg0

s0d + xs0dy+s0d + ys0dx+s0dgdt + dwy0
s0d,

dxs0d =
1

2
fxs0dx0

s0dgdt + dwx1
s0d,

gdys0d = − 2ys0ddt + dwy1
s0d,

dx+s0d =
1

2
fx+s0dx0

s0dgdt + dwx2
s0d,

gdy+ = − 2y+s0ddt + dwy2
s0d. s8.23d

It is worth noting that this set of equations, though having
the same structure as that in the positiveP case, has differ-
ences in the correlations of the noise terms. On adiabatic
elimination of the pump and substituting this result intox0

and x+0 we find the same equations as in the positiveP
representation, since to zeroth order the correlation noise in
both theories is identical.

D. Critical squeezing in Wigner representation

Now we proceed to calculatekyy+l at threshold using the
Wigner representation. Using the Itô rules we get

gdsyy+d2 − 4yy+ +
Î8

2
y0z−

g

2
2yy+x0 + dwy1 + dwy2,

s8.24d

where we have definedz=yx++y+x, which obeys the follow-
ing equation:

gdz= − 2z+ Îgy0xx+ + gÎgy0yy+ + x+dwy1 + gydwx2 + xdwy2

+ gy+dwx1. s8.25d

The squeezing variance at threshold in the steady state is
obtained from the above equation taking expectation values

kyy+l =
1

2
+

Îg

8
ky0zl −

g

4
kx0yy+l. s8.26d

The last term of the above equation can be written as

g

4
kx0

s0dlkyy+ls0d =
gh

4
−

g

8
kxs0dx+s0dl, s8.27d

and Eq.(8.24) gives the result

ky0zls0d = − Îg
grkz2ls0d

2 + gr
+ Îg

ky0
2ls0dkxs0dx+s0dl

2 + gr
. s8.28d

Using the results derived from the zero-order equations

ky0
2ls0d = 2gr ,

kz2ls0d = 2kxs0dx+s0dlkys0dy+s0dl, s8.29d

we finally obtain

kŶŶ†l =
1

2
−

gh

4
+

g

8
S2 + 2gr

2 + gr
DkX̂X̂†l. s8.30d

This result is exactly the same as we obtained using the
positive P representation. We can infer that dropping third
order terms in the Wigner phase space equation does not
have any direct consequence for the near-threshold analysis
of bipartite entanglement to this order of approximation. This
is to be contrasted with the situation far below threshold,
where there are large differences in the nonlinear contribu-
tions, indicating a failure of the truncated(hidden variable)
Wigner theory.

The change in behavior has a simple mathematical origin.
Far below threshold, the signal and idler photon numbers are
small, which leads to a failure of the truncation approxima-
tion when using the semiclassical method. At the critical
point, photon numbers in all modes are relatively large, so
the truncation approximation has less severe consequences.

IX. CONCLUSIONS

We have calculated the effects of nonlinear quantum fluc-
tuations in a nondegenerate parametric oscillator, both below
and at the classical threshold, using stochastic equations that
follow from the positiveP representation, as well as using
truncated Wigner methods.

The analytical results thus obtained are compared with
exact numerical simulations. The spectral entanglement and
squeezing in the output fields are maximized just below
threshold. This may be useful, for example, in cryptographic
applications[39]. We find that at the critical pointsm=1d, the
scaling behavior is quite different from the behavior below
threshold, and must be calculated by using an asymptotic
perturbation theory, valid at the threshold itself. The total
intracavity squeezing and entanglement moment is actually
minimized at a driving field just above threshold. This appar-
ent paradox can be attributed to the fact that the critical fluc-
tuations mostly tend to broaden the squeezing spectrum,
which has a strong effect at zero frequency but does not
diminish the total squeezing moment, integrated over all fre-
quencies.

A similar analysis was carried out within the framework
of the semiclassical theory arising from a truncation to a
Fokker-Planck form of the evolution equation in the Wigner
representation. Here, we found that well below threshold,
while the linear terms agreed with the full quantum calcula-
tion, the nonlinear corrections tend to disagree, especially for
low subharmonic losses. However, at the critical point, the
situation changes. Here, where the dominant terms are non-
linear, we find excellent agreement between the two meth-
ods. While quantum fluctuations are indeed large at the criti-
cal point, it appears that an equally acceptable interpretation
of the observed noise characteristics near the critical point
exists via a semiclassical model, which is essentially a kind
of hidden variable theory.

We have also compared these results with those obtained
by using two degenerate parametric oscillators together with
a beam splitter. While this method creates similar entangle-
ment far below threshold, it is not identical at or near thresh-
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old. In this region, where nonlinearities become important,
the approach of having two degenerate oscillators is quite
different from the nondegenerate case. We find that under
comparable total input photon flux conditions the degenerate
method is generally less efficient at creating an entangled
output. This is due to the fact that, as two pump beams are
needed, a larger nonlinearity is required for comparable en-
tanglement in the output, when the total power input is
matched with the nondegenerate case. This leads to larger
nonlinear corrections near threshold. These differences van-
ish in the limit of a low loss pump mode. However, in prac-
tice there are other losses as well as those caused by the input
and output couplers, which could lead to different efficien-
cies as well.

Our main result is that entanglement, EPR correlations,
and squeezing are optimized very near threshold. In this re-
gion, the semiclassical Wigner approximation can give an
excellent description of the squeezing and entanglement fluc-
tuations, although it is unable to correctly predict the nonlin-
ear corrections far below threshold. On the other hand, some

highly nonclassical signatures of quantum effects occur in
the tripartite correlations, which are not described correctly
by the semiclassical, hidden variable approach. Surprisingly,
these nonclassical and non-Gaussian signatures persist well
below threshold, where one might have expected the usual
linearized analysis to be applicable. Large discrepancies in
the third order spectral correlations are also found even very
close to threshold, where the relevant fluctuations are large.

This suggests that experimental tests of the present theory
may be carried out near threshold—where large effects are
predicted in the enhanced critical fluctuations of the un-
squeezed quadrature and in the nonclassical triple spectral
correlations.
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